

NCCAVS Plasma Applications Group Meeting

EtchTemp Silicon Etch (ET-SE)

SensArray Division

Giampietro Bieli: Application Manager

Executive Summary

- EtchTemp Silicon Etch (ET-SE) targets Poly/STI Etch application
- ET-SE hasY₂O₃ deposited on top of the Si cover of EtchTemp
- Metal contamination levels are similar to regular EtchTemp (silicon cover)
- Prototype testing in Poly Etch (HBr Chemistry)
 - Etch rate of Y₂O₃ film is minimal to none
 - Temperature profile during Poly Etch
 - Delta temperature between ET-SE Prototype and ET
 - No Significant Delta Temp between ET-SE and standard ET
 - Temperature profile in continuous Plasma ON condition
 - ET-SE shows stable temperature up to 10mins Plasma On
- Prototype testing in Poly Etch (SF6 Chemistry)
 - Etch rate of Y₂O₃ film is minimal to none

EtchTemp-SE

Plasma ON Temperature Monitoring of Silicon Etch Processes

- Flat, wireless wafer for in-situ silicon etch chamber & process temperature monitoring
- Enhancements over silicon etch alternatives (special coating, wider operating range, improved S:N, greater lifetime, & lower profile)
- Temperature monitoring with silicon etch chemistry & plasma ON in key use cases:
 - Qualify new etch chambers
 - Match etch chambers
 - Post-PM chamber verification
 - Electrostatic chuck qualification

Accuracy: +/- 0.2C, Precision: 0.25C, Range: 15-130C

EtchTemp-SE

Enabling Plasma ON Wafer Temperature Monitoring of Silicon Etch Process

Application Landscape ET for BEOL Oxide Etch, ET-SE for FEOL Si Etch

EtchTemp

- Ideal for BEOL applications such as.
 - Copper Trench Etch
 - Stack capacitor etch
- FEOL applications for Etch Temp has some limitations.
 - Must Use a Proxy chemistry to protect Silicon cover.
 - This Proxy chemistry does not provide exact thermal match to production recipe.
- EtchTemp-Silicon Etch
 - For critical FEOL application

Key Spec Comparison EtchTemp vs. EtchTemp-SE

Features	EtchTemp	EtchTemp-SE
Etch Application Space	Oxide	Poly, STI
Accuracy (C)	+/-0.2	+/-0.2
Sensor-to-Sensor Precision (<c)< th=""><th>0.25</th><th>0.25</th></c)<>	0.25	0.25
Max RF Power (Dual Source, kW)	7	7
Sensor Quantity	65	65
Front Surface Back Surface	Silicon Silicon	Y ₂ O ₃ Silicon
Sampling f(max) (Hz)	4	4
Operating Temperature Range (C)	15-130	15-130
Roadmap	Extendable	Extendable

No Significant Delta Temp Between ET-SE (Y₂O₃) and Std. ET Poly Etch

Std Silicon cover Vs Y2O3 cover

Etchtemp with standard silicon cover vs Etchtemp with Yttrium coating Test to verify that Y_2O_3 will not affect temperature reading

Std ET 1

Std ET 2

Y203

1 0.5 0

EtchTemp Silicon Etch (ET-SE) Value Deep Trench Etch

Temperature delta using Production recipe (HBr/NF3/O2) and Proxy Recipe (Ar/O2)

Use Case

ET-SE identify edge temperature issue correlated to etch depth issue *DTI Logic*

Temperature data correlate to Etch Rate data Higher Etch Rate= Higher Temperature

ET-SE identified Yield issue : CH A production Hold for CDU issues STI Etch

correlate to High CD

Tencor

High CD Chamber shows High Wafer Temperature *STI Etch*

Post ESC replacement fixed the edge temperature spread with between golden ch and down ch

ET-SE identify ESC lifetime impact on Temperature *Poly Etch*

Chamber fleet

Example of ESC plasma ON data collection that was able to identify chamber differences due to ESC lifetime

ET-SE Poly Etch

- Chamber matching issue within different fabs.
- Also, demonstrated process gas trouble shooting capability with ET-SE.
- This excursion event led to a 3-week chamber down time before temperature analysis.

ET-SE Recommended for 4zone ESC Plasma ON Qualification Poly Etch

CH2

tial - Internal Us

KLA-Tenco

CH1

study CD/Yield localized issue

ET-SE Identifies Hot Spot that Correlates to CD Excursion *Poly Mask Etch*

PM2 shows CD excursion in lower left edge that correlates to hot spot seen on ET-SE

Temperature Variation across Chambers & Shifts Over Time *Cylinder Support Etch*

Chamber baseline confirmed shifts over time

New Procedure: Post PM temperature data collection for chamber monitor and faster troubleshooting

Conclusion

- ET-SE demonstrated temperature monitoring capability with silicon etch chemistry & plasma ON in key use cases
- ET-SE is used for :
 - Chamber Matching
 - Troubleshooting
 - Chamber Monitoring
 - Temperature DOE for process optimization
 - ESC replacement
 - Tool Start up
 - Post Pm chamber verification

Copyright © 2010 KLA-Tencor Corporation

www.kla-tencor.com