EV Group

Plasma Activation – An Enabling Technology for Wafer Bonding

Eric F. Pabo Business Development Manager MEMS

e.pabo@evgroup.com

PAG Semicon West 2010

Plasma Activation – An Enabling Technology for Wafer Bonding

Outline

- Why Bond driving forces
- Bonding Processes
- Alignment Processes
- PA (PLASMA Activated) Bonding

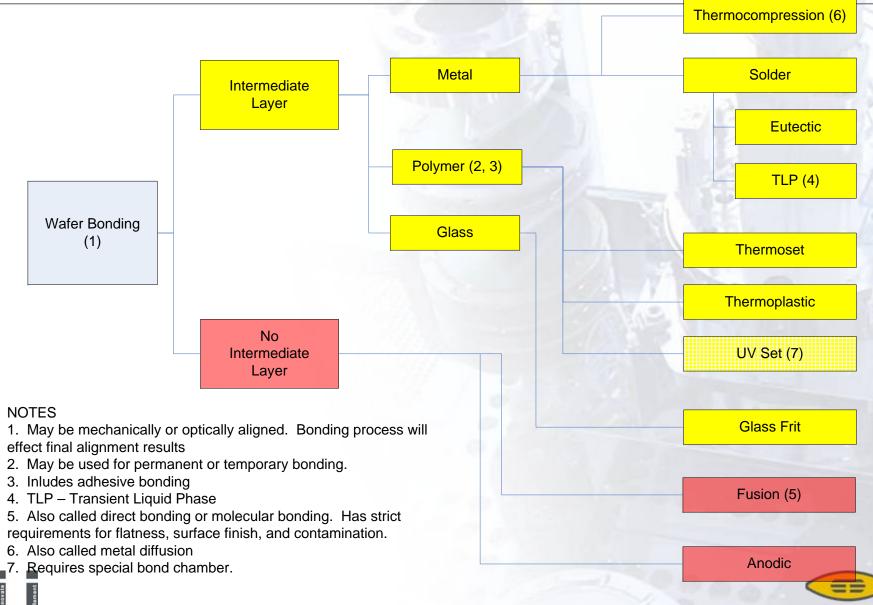
Why Bond?

Bonding allows

- Combining
 - Materials
 - Si
 - Glass
 - Processes
 - CMOS
 - MEMS
 - Functions
 - Mechanical
 - Sealing / Isolation (hermeticity or micro channels)
 - Electrical
 - Thermal
 - Acoustic
- Parallel Processing
 - Up to 15,000 parts processed in one time
- Repartitioning
 - Cost / Performance
 - Decoupling of chip revisions
- Performance
 - Decreasing signal path length
 - Form factor
- Increased integration easier for customer to design in (customer has digital I/O)

This has enabled

- MEMS Devices
 - Accelerometers & Gyroscopes
 - Automotive
 - Gaming
 - Pressure sensors
 - SOI wafers
 - Microfluidics
 - etc
- Increase Device Performance
 - Special substrates
 - Use the Z dimension
 - 3D ICs
- Combine Techologies
 - Combine techologies (Image sensor & processor)
- MOEMS Devices
 - Parallel assembly of image capture assemblies
 - Parallel assembly of image emitting devices
 - (Sensor/Emittor/Modulator with Optics)
- MEMs packaging
 - Decrease Cost
 - Hermetic packaging by WLP


Plasma Activation – An Enabling Technology for Wafer Bonding

Outline

- Why Bond driving forces
- Bonding Processes
- Alignment Processes
- PA (PLASMA Activated) Bonding

Types of Bonding

G

Bonding Process Requirements

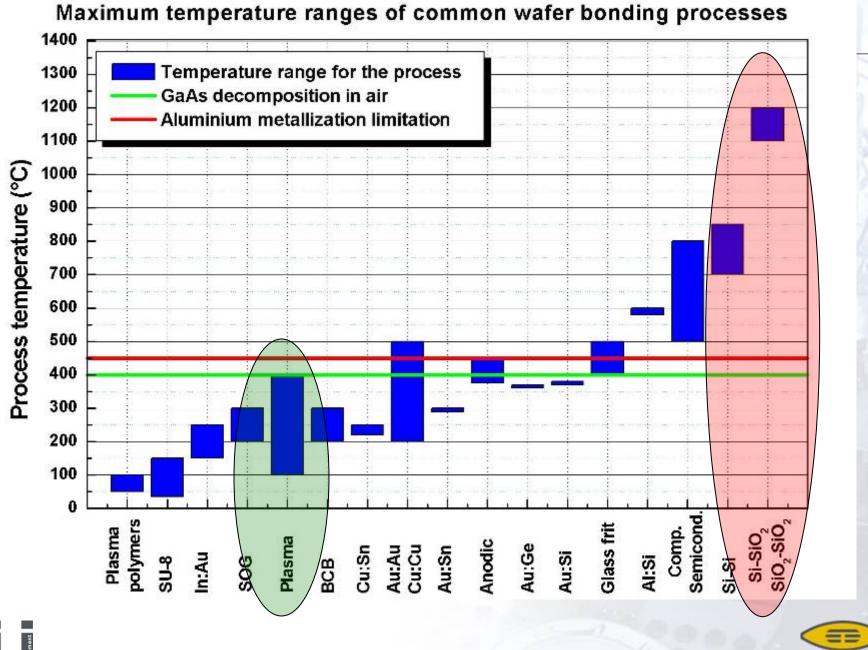
	No li	Intermediate Layer Intermediate Layer							
	Anodic Bonding (Electric Field)	Direct Bonding	Plasma Activated Direct Bonding	Glass Frit	Thermo Compression	Solder / Eutectic / TLP	Adhesive	Epoxy (thermally cured)	Epoxy (UV cured)
Surface Roughness	< 20 nm	< 0.5nm	< 2 nm	< 1000 nm	< 2 nm	< 1000 nm	< 1000 nm	< 1000 nm	< 1000 nm
Layer Thickness	NA	NA	NA	Determined by silk screen process	~ 1000 nm each side	~ 1000 nm each side	?	?	?
Process Temperature	400 - 500 C	1000 C (anneal)	Room Temp & 200-300 C anneal		300 - 500 C depending on metal	200 -500 ¢ depenting on metal	< 200 C depending on adhesive	< 200 C depending on adhesive	~ Room Temperature
Cleanroom Environment (FS209E)	100	10 or 1	10	1000	10	100	100	1000	1000
Sensitivity to Particles	Medium	High	High	Low	Medum	Medium	Low	Low	Low
Sensitivity to Surface Contamination	Medium	Very High	Very High	Medium	High	High	Low	Low	Low
Na present	Yes	No	No	No	No	No	No	No	No
Cycle Time (minutes)	45 - 90	Bond ~ 1 Anneal - hrs	Bond ~ 1 Anneal hrs	45 - 90	30 - 90	30 - 60	5 - 45	15-30	5 -15

invent

innovate mplement

Bonding Process Performance

		ntermediate L	_ayer			Intermed	iate Layer		
	Anodic Bonding (Electric Field)	Direct Bonding	Plasma Activated Direct Bonding	Glass Frit	Thermo Compression	Solder / Eutectic / TLP	Adhesive	Epoxy (thermally cured)	Epoxy (UV cured)
CMOS Compatible	No	No	Yes	No	Yes	Some	Some	Yes	Yes
Electrically Conductive	No	No	No	No	Yes	Yes	No	No	No
Vacuum Low < 1 mbar	Yes	Yes	Yes	Yes	Yes	Yes	No	No	?Yes
Vacuum High < 2 mbar	No	No	Yes	No	Yes	Yes	No	No	No
Current Manufacturing Volume;	High Mature	High Mature	Low Early	High Mature	Medium to High Mature	High Mature	High Mature	High Mature	High Mature
Mechanical Strength Sufficient for Backgrinding	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Max Post Bond Temperature	> 1000 C	> 1000 C (> 1000 C	350-450 C depending on Glass Frit	Limited by melting point of metal or eutectic	Limited by melting point of solder except for TLP is higher			Low, limited by adhesive



G

invent

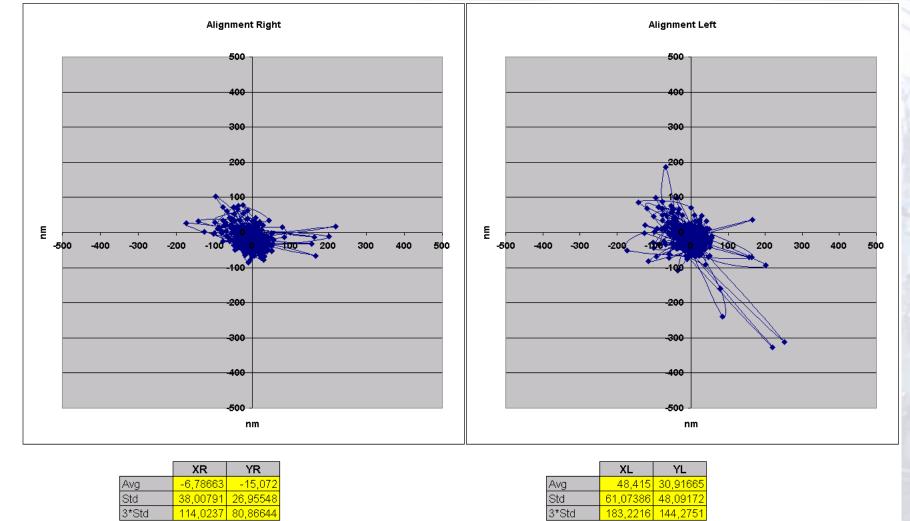
innovate

nplement

EV Group Confidential and Proprietary

G

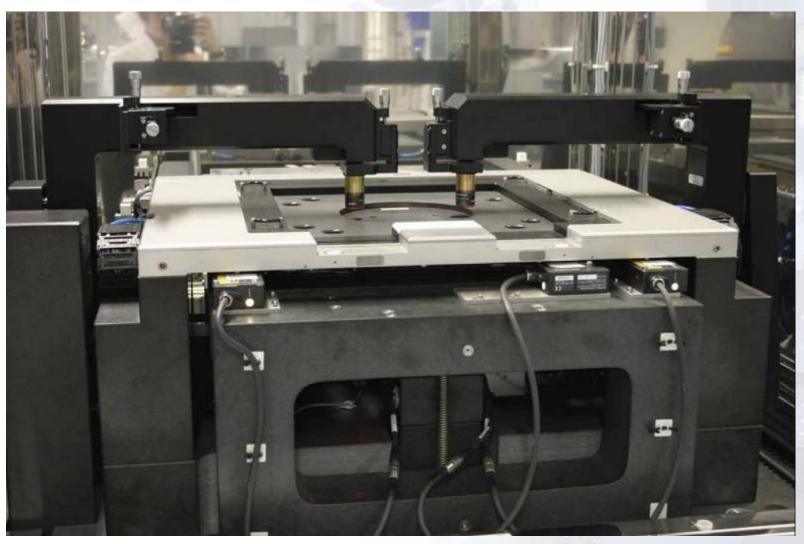
v


Plasma Activation – An Enabling Technology for Wafer Bonding

Outline

- Why Bond driving forces
- Bonding Processes
- Alignment Processes
- PA (PLASMA Activated) Bonding

SmartView®NT Results


	XL	YL
Avg	48,415	30,916
Std	61,07386	48,091
3*Std	183,2216	144,27

	XR	YR
Avg	-6,78663	-15,072
Std	38,00791	26,95548
3*Std	114,0237	80,86644

<200nm (3 Sigma) Alignment Capability

SmartView®NT

EV Group Confidential and Proprietary

innovate

implement

invent

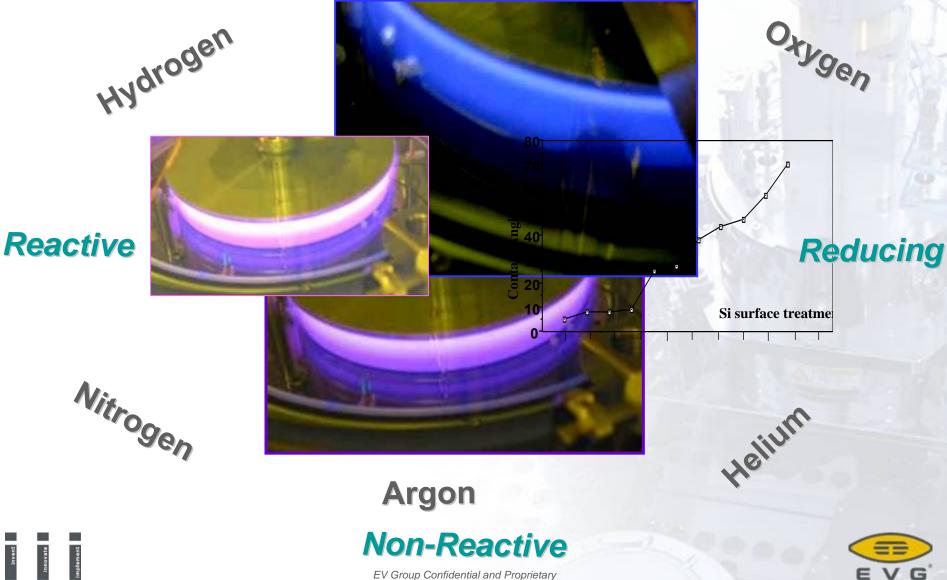
Plasma Activation – An Enabling Technology for Wafer Bonding

- Wafer Growth During Bonding
 - Wafer Size
 - Silicon TCE
 - Alignment Temp
 - Bond Process Temp

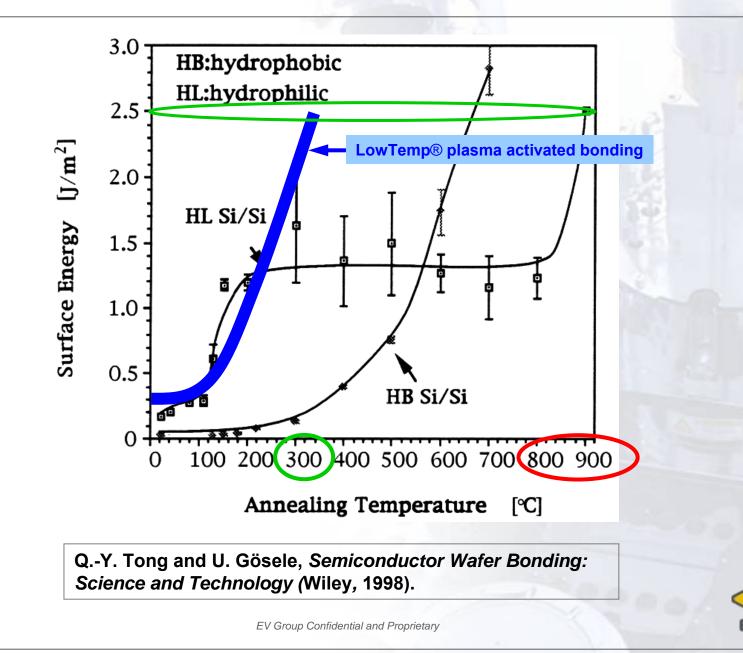
300 mm wafer ~3ppm 25C 425C

Results in wafer growth of ~380 um

Plasma Activation – An Enabling Technology for Wafer Bonding

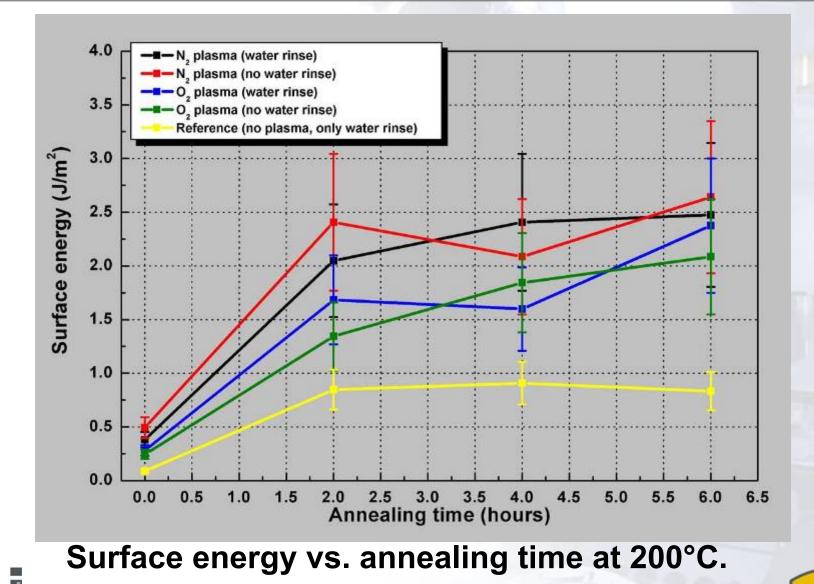

Outline

- Why Bond driving forces
- Bonding Processes
- Alignment Processes
- PA (PLASMA Activated) Bonding



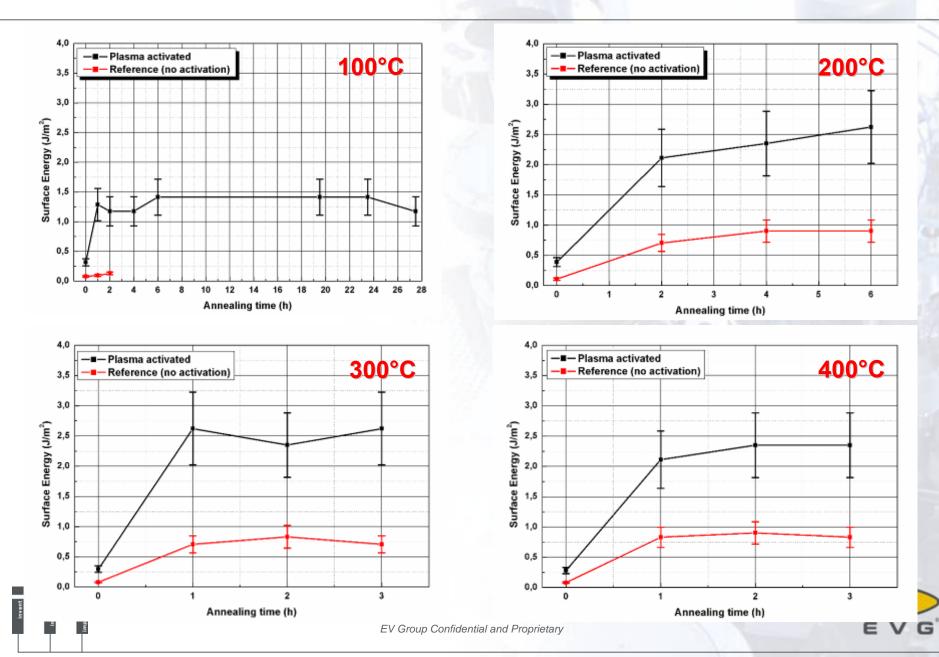
Plasma Chemistry

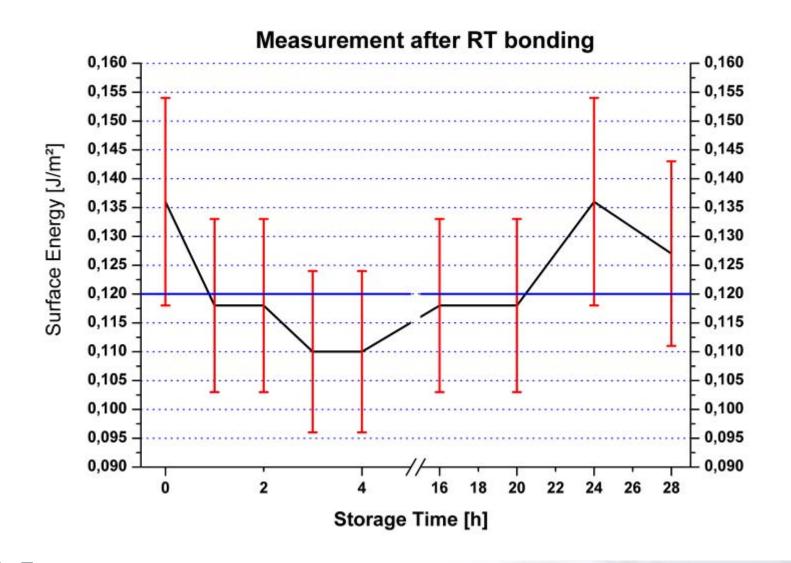
Custom



Silicon Direct Bonding

G


Test 1: annealing at 200°C


EV Group Confidential and Proprietary

G

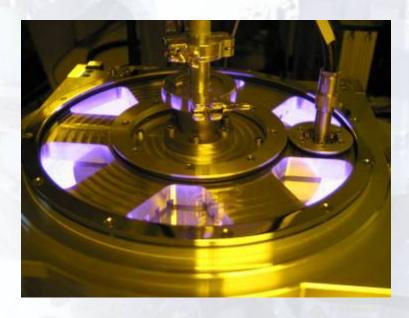
Surface Energy vs. Thermal Annealing Time

Activation Lifetime

G

V

E


Plasma Activation

Principle: Tailoring the surface chemistry

Flexibility: Compliant with various materials (not only semiconductors)!

Technology: Fully compliant with state of the art waferto-wafer alignment and bonding equipment Result:

Increased bond strength at low temperature

Benefits: Expand wafer bonding applications field Bring bonding processes at industrial level Economic: Equipment costs decrease Cost decrease per device (e.g. MEMS)

	EVG810LT Chamber (150 mm)	EVG810LT Chamber (200mm)	EVG810LT Chamber (300mm)	Full Gemini Platform	EVG850LT Platform (200mm)
LowTemp [®] Plasma Chambers:					
Short Description:	Manual load dry activation chamber	Manual or auto load dry activation chamber	Manual or auto load dry activation chamber	Auto-load Dry Activation Cluster Tool w/ Alignment and Compression Bond Chamber	Auto-load Dry Activation Cluster Tool w/ Pre-Bond Chamber
Max. Wafer Diameter	150	200	300	200	200
Min. Wafer Diameter	pieces	auto load: 100 (opt. 50) man. load: pieces	auto load: 200 man. load: pieces	auto load: 50mm- 100mm or 100mm - 200mm	auto load: 50mm- 100mm or 100mm - 200mm
Rack	yes	yes	yes	yes	yes
Automated Cover	optional	yes	yes	yes	yes
SmartView Integration-ex situ		yes	yes	yes	
In situ Compatible		yes	yes	yes	yes
Ex situ compatible	Standard	Standard	Standard	Standard	yes
Metal Ion Free	optional	optional	optional	optional	Standard
Supports Vacuum Packaging	only with <i>in situ</i> option	only with <i>in situ</i> option	only with <i>in situ</i> option	yes	yes
Supports (anodic, eutectic, glass fritt, polymer)dependent on configuration				yes	
Supports optically aligned wafer bonding	yes	yes	yes	yes	

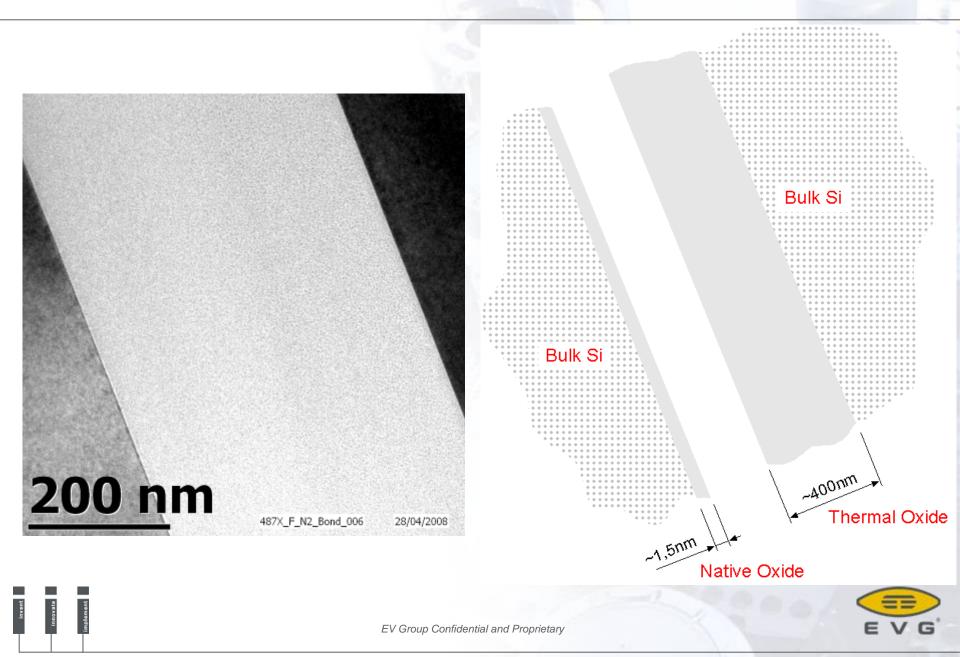
Global Wafer Shape

Specifications:

- TTV ≤ 3 μm
- Bow/Warp
 ≤ 30µm 100mm
 ≤ 40 µm 200mm
 ≤ 50 µm 300mm
- Microroughness (measured by AFM, 2 x 2µm²):
 < 0.5 nm (all wafer diameters): excellent results
 < 1.0nm: good results
 < 1.0 2nm: possible under some special condition
 - < 1.0-2nm: possible under some special conditions

Accepted Contamination Levels

- Particles:
 - Incoming wafers:
 - Si: <0.1 LPD/cm2, size >0.15μm - Oxide: <0.1 LPD/cm2, size >0.2μm


(0.1LPD = 8p/100mm, 12p/125mm, 18p/150mm, 31p/200mm, 71p/300mm)

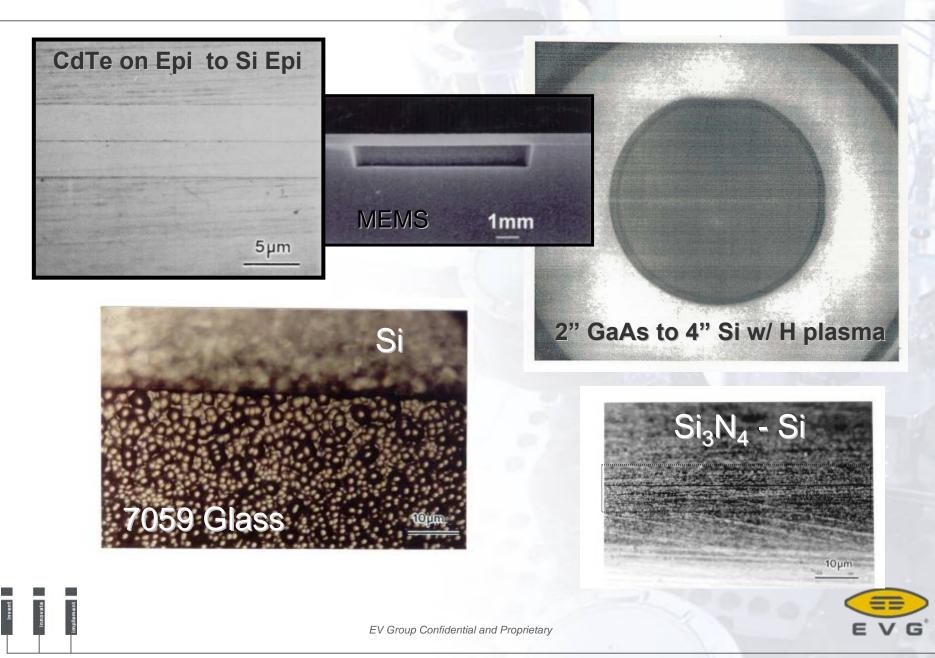
- Wafers handling (environment): Added: <0.015 LPD/cm2 (0.015LPD = 1p/100mm, 2p/125mm, 3p/150mm, 5p/200mm, 11p/300mm)
- Process stations (clean, plasma and pre-bond):

 Added: Si:
 Oxide:
 Oxide:
 (0.05 LPD/cm2, size >0.15µm
 (0.03LPD = 2p/100mm, 4p/125mm, 6p/150mm, 9p/200mm, 21p/300mm
 0.05LPD = 4p/100mm, 6p/125mm, 9p/150mm, 16p/200mm, 35p/300mm)
- Metal ions (Fe, Cu, Ni, Al, Na, K, Ca, Mg): Equipment installation: ≤ 5 x 10¹⁰ atoms/cm2 SOI production: ~10⁹ atoms/cm2

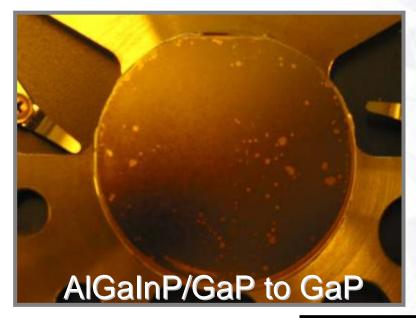
TEM Analysis

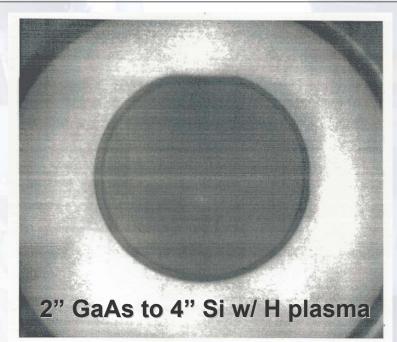
Conclusion

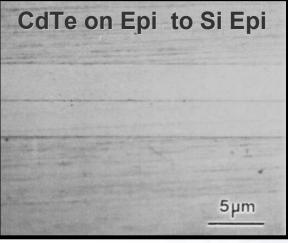
- Plasma activation of the surfaces overcomes the problem of high process temperatures needed for standard fusion bonding.
- Surface activation effect has a relatively long lifetime.
- Despite the long lifetime it is strongly recommended to pre-bond the substrates as soon as possible after activation for contamination reasons.
- Plasma activation doesn't increase surface microroughness.
- TEM investigation shows no visible bond interface line.



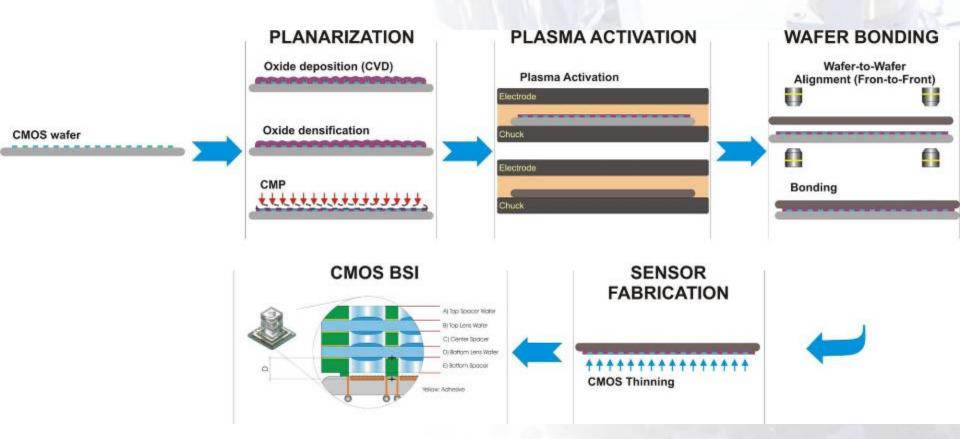
Plasma Activated Wafer Bonding Applications


- SOI → maximum bond strength reached below cleaving temperature
- MEMS: sealing → vacuum sealing compatible
- MEMS: materials combinations → low temperature allows stress management
- MEMS on CMOS (e.g. backside illuminated image sensors)
- Polymer materials for bio-compatible applications

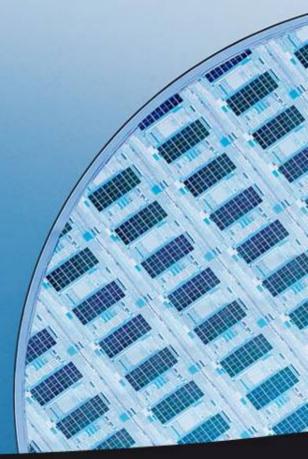



Low Temperature Plasma Bonded Gallery

Examples: Compound Semiconductors



Wafer Bonding for CMOS BSI CIS: Fusion


EV Group

Thank You for Your Attention Questions?

www.EVGroup.com

Triple i - The key to your success

Incoming	In Chamber	Outgoing
1.Wafer a.Size i.Diameter ii.Thickness b.Material i.CTE c.Bow & Warp d.TTV e.Vacuum integrity ^[1]	1.Wafer	1.Wafer a.Bow & warp b.TTV c.Breakage
1.Contact Layers a.Thickness b.TTV c.Roughness d.Bulk Composition e.Surface Compostion f.Surface Particles g.Surface Contamination h.Pattern	1.Standard Bond Chamber a.Time b.Temperature c.Force ^[2] d.Atmosphere ^[3] e.Wafer to wafer spacing (flate f.Bow Pin g.Voltage / current 2.Special Bond Chamber a.UV energy b.Plasma 3.Materials a.Tg or Melting Point b.Outgassing c.Shrinkage d.Adhesion e.Flow	I.Bond Layers a.Percent bonded (voids) b.Thickness c.Strength d.Hermeticity e.Conductivity f.Pattern 2.Atmosphere in cavities if present a.Gas b.Pressure
1.Alignment 2.Spacing (gap between wafers)		1.Alignment 2.Wafer to wafer spacing
 [1] Can the wafer be handled by back will edge handling or other special ha [2] Translates to pressure based on be [3] Vacuum, forming gas, inert gas; not 	Indling be required?	Color Code tems in RED are controlled by upstream process tems in Green are controlled by alignment system tems in BLACK are controlled by bond chamber tems in BLUE are output variables

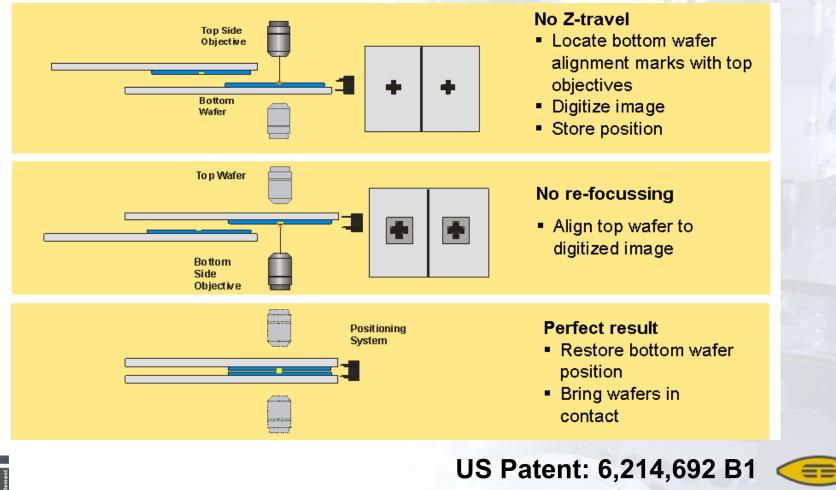
SmartView[®] - Benefits

Supports all bond alignment methods

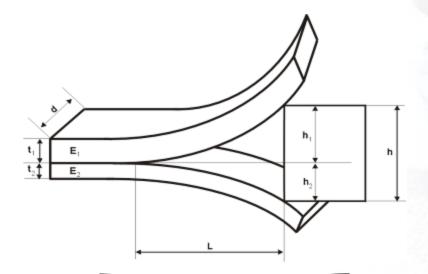
- Transparent Alignment
- IR Alignment
- Backside Alignment
- SmartView (Face-to-Face) Alignment

SmartView (Face to Face) Alignment Advantage

- Eliminates need for
 - IR transparent substrates which prevents high doping levels and requires metal line keep-outs around alignment targets.


Or

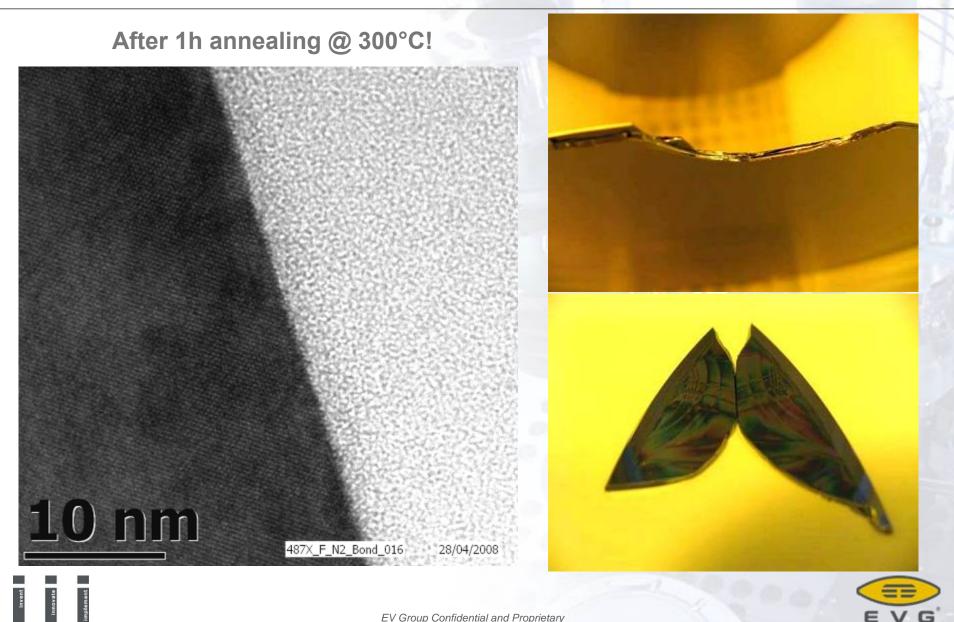
- Backside alignement marks
- This reduces the cost and simplifies the design


SmartView® Face-to-Face Bond Aligner

 Proprietary Alignment Technique that allows for high alignment accuracy as needed for high density interconnects with <u>non-IR transparent wafers.</u>

Bond Strength Quantification

Crack-opening method (Maszara, Razor blade)


Dissimilar materials:

$$\gamma = \frac{1}{2} (\gamma_1 + \gamma_2) = \frac{3h^2}{16L^4} \frac{E_1 t_1^3 E_2 t_2^3}{E_1 t_1^3 + E_2 t_2^3}$$

Identical materials: $\gamma = \frac{3h^2 Et^3}{32L^4}$

IR transmission image of a Si/Si bonded pair with a razor blade inserted at the bonded interface.

TEM Analysis

