

Trends in Plasma Etching and Deposition for LED Fabrication

NCCAVS Plasma Applications Group July 15, 2010 David Lishan

Overview

Plasma-Therm Introduction

- LED Applications and Market
- LED Manufacturing
 - Cost/Performance Evolution
 - Process Flow Overview
 - Front End Processes and Endpoint Controls
- Conclusions

Plasma-Therm Re-Established as Independent Operation

St. Petersburg, FL Corporate Headquarters

- Integrated office and manufacturing facility (65,000 ft²)
- Class 1000 manufacturing area
- Class 100 Demonstration Laboratory

Production and R&D Solutions for Specialty Markets

- Leverage our Etch and PECVD platforms and experience for applications in:
 - Solid State Lighting
 - Wireless
 - Photomask
 - Nanotechnology
 - MEMS/NEMS
 - Renewable Energy
 - Data Storage
 - Photonics
 - R&D

Advancing Wafer and Mask Processing Equipment for 35 Years

Overview

Plasma-Therm

- LED Applications and Market
- LED Manufacturing
 - Cost/Performance Evolution
 - Process Flow Overview
 - Front End Processes and Endpoint Controls
- Conclusions

High Brightness LED Market and Applications

Source: Strategies Unlimited, 2010

Earth at Night – SSL Opportunity

Solid State Lighting Opportunity

If a 150 Im/Watt Solid State White LED source was deployed Globally then: We would realize savings of \$100 Billion/year Alleviate the need of 380 new power stations!*

Source: DOE SSL Workshop 2010

HB-LED Market Forecast 2005 to 2015

Drivers

- Backlighting
- General lighting
- Increasing govt.
 legislation phasing out incandescent
 lighting
 - 🗆 EU (2009)
 - Australia (2009)
 - Cuba (2009)

Source: Yole, 2010

Overview

Plasma-Therm

- LED Applications and Market
- LED Manufacturing
 - Cost/Performance Evolution
 - Process Flow Overview
 - Front End Processes and Endpoint Controls
- Conclusions

Components of LED Luminaire

Haitz Law – Performance/Cost Evolution

Source: Roland Haitz and Philips Lumileds

Cost Reduction Targets in HBLED > 10x Cost Reduction

Cost savings opportunities identified: improvements in manufacturing process, equipment productivity, and process control

Source: Solid-State Lighting Research and Development: Manufacturing Roadmap, July 2010, DOE Manufacturing Workshop consensus

Cost Breakdown for a Packaged LED

Source: Solid-State Lighting Research and Development: Manufacturing Roadmap, July 2010, Preliminary data provided by the Cost Modeling Working Group

Low Yields – Key Manufacturing Issue

18% yield for entire process

- Electrical failure
- Binning for color
- Binning for output
- Optical alignment

Source: IMS Research Jan 2010, industry-wide 2009 yields

Manufacturing Tools Contribute ~500x Price Reductions in Processed Silicon

- 1975, the average price per transistor was ~\$0.02 (4 µm features)
- 2008, the average price per transistor was ~\$5x10⁻⁹ (45 nm features)
 - This is a 4,000,000x reduction in cost
 - Device scaling accounts for ~8,000x cost reduction (\$/transistor)
 - Manufacturing efficiencies account for ~500x reduction in the price of processed silicon

Source: Intel/WSTS, 8/07

Where Will LED Cost Improvements Come From?

Silicon History		Semi Status: early 70's	Semi Status in 2008	Semi Gain
	Wafer Size (mm)	50	300	36x
	Throughput (wafers/hour)	~50	~200	4x
	Yields (%)	<50%	>90%	2x
	Utilization (%)	≪50%	>95%	2x

- LED Manufacturing Cost reductions will come from a combination of:
 - Improved LED efficiencies and drive current: (~2-4x)
 - Larger Wafers: (~2x)
 - More Productive Tools (higher throughput & yields; lower COO): (~2-3x)
 - Better Utilized Tools (Uptime): (~2x)

Source: Ultratech

Overview

Plasma-Therm

- LED Applications and Market
- LED Manufacturing
 - Cost/Performance Evolution
 - Process Flow Overview
 - Front End Processes and Endpoint Controls
- Conclusions

LED Manufacturing Process Flow

Lowering Epitaxy Manufacturing Costs

Large impact on subsequent wafer fabrication costs

- 150mm Sapphire
 - ~50% epitaxy cost reduction
 - 150mm sapphire substrate expected to be majority of total epi cost
- 150mm Si Substrates
 - Substrate cost reduction ~75% by replacing sapphire with silicon
 - Substrate cost becomes minor contributor to total epi cost

Substrate Roadmap – Size and Material Commercial Implementation

Source: DOE SSL Workshop Consensus, 2010

GaN Epitaxy on 150mm Sapphire and Silicon

Planetary Reactor®:

6 x 6" – 11 x 4" – 42 x 2"

Susceptor with rotating Wafer Disks Stainless-Steel Vessel

Buffer: 1µm GaN on 6x6" Si - Crack free

PROPRIETARY !

RIXTRON

Courtesy of **RIXTRON**

Overview

Plasma-Therm

- LED Applications and Market
- LED Manufacturing
 - Cost/Performance Evolution
 - Process Flow Overview
 - Front End Processes and Endpoint Controls
- Conclusions

LED Manufacturing Process Flow

Front-End LED Process

- Lithography
- PECVD
 - Passivation/encapsulation
 - Hardmasks
- Etching
 - Mesa
 - Streets
 - Hardmasks
 - Contacts
 - Sapphire patterning
- PVD
 - Contacts
 - Reflective layers

Market Segmentation Conventional vs HB & UHB

HB & UHB

- Automated processing
- Larger substrates
- Single wafer processing
- Conventional LED
 - Semi-automated processing
 - Wide range of substrate sizes
 - Batch processing

Patterned Sapphire Substrate (PSS) System Specific

- Enhanced light extraction
- Improved epitaxial material (lower defects)
- Requires purpose built tool for LED Market

Etch & Deposition Process Control

- Detection of material interfaces
- Process control for specified depth or thickness
- Real time etch rates and selectivity

Process Control Endpoint Techniques

Desired Measurement Technique

- Accurate
- Non-invasive
- Robust
- Direct measure
- Inexpensive
- Flexible

Generic OES Endpoint Detection

Endpoint for Deposition

Endpoint for DSE®

Endpoint for Dielectric Etch

Background Diagnostic Candidates

Plasma Measurements

- Optical
 - Optical Emission Spectroscopy (OES)
- Electrical (e.g. RF match positions)
- Species Analysis (e.g. RGA))
- Tool response (e.g. throttle valve position)

Optical

- Laser Interferometry
- Optical Emission Interferometry (OEI)

Optical Diagnostics Laser Interferometry

 $D = \lambda / 2n_f$

Time

sma - 1

EADING SUPPLIER OF PLASMA PROCESS EQUIPMEN

= Etch Rate

Etch Depth Monitoring using Plasma-Therm EndpointWorksTM

EndpointWorks[™] peak counting algorithm – User Interface

Etch Process Control using Compositional Change – OES

Etch Depth Process Monitoring Using OEI

Example GaP/AlInGaP Etching with OEI

Benefits

- Etch rate estimates every ¹/₂ cycle
- Real time etch rates of individual materials
- Real time selectivity data for sequential films

Patterned Material Etching Using OEI

- Signal depends on:
 - relative area film/mask

simple peak counting fails

relative etch rate film/mask

Patterned Material Etching Using OEI

Real Time Etch Rate and Selectivity Monitoring Using OEI

Signal intensity gives Etch Rates & Selectivity

PECVD Deposition Process Control OEI

Process Stability with Run-to-Run Repeatability

- Compensates for process disturbances (e.g gas changeouts, cleans)
- Decreases requalification time
- Compensate for material variation
- Compensate for tool variation
- Scrap reduction
- Improve process throughput

1010

Conclusions

Market Demand for LEDs will remain strong

- Present Backlighting applications
- Future Solid State Lighting

LED Manufacturing vs Main Stream Si

- LED material diversity vs Si critical dimensions
- LED toolsets will continue to mature and realize productivity gains similar to mainstream Si evolution
 - Wafer sizes
 - Process control
 - Tool features for throughput and COO

Collaborators

- Russ Westerman
- Dave Johnson
- Dwaraka Geerpuram
- Chris Johnson
- Linnell Martinez
- Jason Plumhoff
- Applications / Product Development Team

Contact:

David.Lishan@PlasmaTherm.com www.PlasmaTherm.com

Thank You for Your Attention