AVS PAG Meeting

UNIFORM GROWTH OF LARGE AREA a-Si / μ c-Si TANDEM JUNCTION THIN FILM SOLAR CELLS BY CAPACITIVE COUPLED PECVD

Yi Zheng, Alan Tso, Fan Yang, Rongping Wang, Tom Tanaka, Ned Hammond, Lin Zhang, Zheng Yuan and Brian Shieh

Thin Film Solar Products Division, Applied Materials, Santa Clara, CA 95054

think it. apply it.

Applied Materials External

APPLIED MATERIALS.

Types of Solar Cells

- Crystalline Silicon
 - Monocrystalline, Multicrystalline, Ribbon, etc.

Thin Films

- Amorphous and crystalline silicon
- Cadmium Telluride (CdTe)
- Copper Indium Selenide (CIS, CIGS)
- Concentration
 - Silicon, multi-junction III-V, thermophotovoltaic
- Emerging Technologies
 - Organic materials, Nanostructures, etc.

Crystalline Si and Thin Films dominate market today

NREL Cell Efficiency Map

Display & SunFab Solar

APPLIED MATERIALS

PV Module Price Reduction

Module price decreases 20% for every 2x production increase

Display & SunFab Solar

Applied Materials External

APPLIED MATERIALS.

Thin-film Advantages and Disadvantages

<u>Advantages</u>

- CIS
 - Highest thin-film efficiencies
 - Good cell stability
 - Good product appearance
- CdTe
 - High deposition rate
 - Proven large-volume mftg
 - Current low cost leader
- Si
 - Well-known Si-based PV science
 - Multi-junctions for high efficiency
 - Large-area, large-volume mftg

Disadvantages

- CIS
 - Mftg yield and volume
 - Indium price / availability
 - Field durability
- CdTe
 - Mftg and product restrictions (Cd)
 - High-temperature process
 - Absorber thickness ; Te availability
- Si
 - Single-junction efficiency
 - Deposition rate
 - Multi-junction mftg control

Leading Thin Film PV Technologies

APPLIED MATERIALS.

Thin Film Technology Comparison

	CIGS	CdTe	TJ a-Si/uc-Si
Module Size (m ²)	≤ 0.72 m²	≤ 0.72 m²	1.43m ² , 2.86m ² , 5.72m ²
Stabilized Module Efficiency Today	8-12%	10%	8%
Stabilized Module Efficiency Roadmap to 2010	15%	12%	10%
Best Laboratory Cell Efficiency	19.5%	17%	13.5%
Temperature Coefficient, Power	-0.36 % / °C	- 0.25 % / ° C	- 0.2 % / ° C
Raw Materials for PV	3 – 5 GW annual (limited Indium increases cost)	3 – 5 GW annual (limited Telluride increases cost)	Unlimited Si supply
Volume Production Ramp Readiness	Material, uniformity, t-put, equipment maturity, etc.	In volume production	In volume production
Module Reliability	Limited field data impacts financiability	Limited but growing field data	a-Si >20 years
Production Cost / Wp in 2010	No volume production cost data	<\$1.00 /Wp	<\$1.00 /Wp
Applications	Rooftop, BIPV	Solar Farms, Rooftop, BIPV	Solar Farms, Rooftop, BIPV

*Sources: NREL, Deutsche Bank, USGS, Photon International Display & SunFab Solar

Applied Materials External

APPLIED MATERIALS.

Thin Film Si PV Cell - Single Juction & Tandem Junction

Display & SunFab Solar

Applied Materials External

APPLIED MATERIALS.

Applied's Tool Box

Silicon Systems

Advancing Technology Innovating Productivity

Display Business

Delivering New Technology and Scale

Fab Solutions Driving Fab Productivity

Energy & Environmental Solutions

Changing the Energy Equation

9

Applied Materials External

APPLIED MATERIALS.

Our demonstrated capability in large area TFT-LCD tools

SunFab Value Proposition – 12 Lines Worldwide

Module Right Sizing Advantage & Flexibility

- Flexible panel size (¼, ½, and Full Size) serves multiple markets: residential rooftop, commercial rooftop, BIPV, and utility scale
- SunFab full size panel (5.7m²), world's largest, delivers the highest power out per panel 560Wp

Leading Technology

- High Efficiency Tandem Junctions, Better Energy Harvest due to lower temperature coefficients
- High-speed, high-yield processing of thin glass substrates (2.2x2.6m)

Fastest to Scale

- World class equipment serves as foundation for Factory performance
- <6 months from factory ready to Volume Production

Display & SunFab Solar

To pump

- Single gas feed through at the center of the chamber lid

Diffuser:

Distribute gas flow

PH₃ for n-doping)

RF electrode

Process gases:

- SiH₄, H₂

Proprietary hallow cathode design

- Dopants (C_3H_9B for p-doping and

- Enhanced gas dissociation
- Uniformly dissociated reactant gases
- Susceptor
 - Multiple heating and cooling zones
 - Ensure temperature uniformity
 - RF ground
- Slit valve for substrate loading / unloading

PECVD chamber structure

APPLIED MATERIALS

Display & SunFab Solar

Applied Materials External

APPLIED MATERIALS.

13

Big Challenge - 5.7m² Substrate µc-Si Film

amorphous phase at corners

Crystalline fraction along diagonal

¶.

a-Si due to lower power density Result is lower cell J_{sc} & FF

Structure of µc-Si:H

Porous Cracks/columns in TEM High spin density Bad solar cells Compact Cracks/columns in TEM Low spin density Good solar cells

Parameters that Affect Film Uniformity

Pumping Mechanism

15

Applied Materials External

Plasma Uniformity - Proprietary Electrode Design

Applied Materials External

Chamber Flow Simulation

Chamber pumping flow simulation indicated non-uniform flow distribution

Applied Materials External

APPLIED MATERIALS.

Full Size 5.7m² uc-Si Film

µc-Si layer with LCD Hardware **Crystalline Fraction (f_c)** 70 a-Si deposition in the 60 corners due to lower power density 50 (%) ³ 40 Result is lower cell V_{oc} & FF 30 20 1000 1500 2500 500 2000 Distance (mm)

µc-Si layer with New Hardware

TJ Cell Efficiency & J_{sc} ¹² ¹⁰ ¹⁰ ¹² ¹⁰ ¹² ¹⁰ ¹² ¹² ¹⁰ ¹² ¹² ¹² ¹⁰ ¹² ¹² ¹² ¹⁰ ¹² ¹² ¹⁰ ¹² ¹² ¹⁰ ¹² ¹² ¹⁰ ¹⁵ ¹⁵

- New Hardware improved uniformity and crystalline fraction
- Results in better homogeneity and higher efficiency

Display & SunFab Solar

Two Remaining Issues:

19

Thickness Across Panel

 Asymetry of uc-Si Crystalline **Fraction Uniformity** • Corner low dep rate

Display & SunFab Solar

Balance the Plasma – Unbalance the Feed

RF Fee Location Effects on mc-I Thickness and Fc Uniformity

Rev2 RF Feed improved thickness and fc uniformity

Display & SunFab Solar

Applied Materials External

APPLIED MATERIALS.

Local RF Density Enhancement – Grounding

<u>Approach</u>: modify grounding configuration to modulate the electrical field at corners.

Good correlation between simulation and experiment

Display & SunFab Solar

Applied Materials External

APPLIED MATERIALS.

Uniform Large-Area uc-Si Film

Uniform uc-Si coating

042409, Single layer dep rate (A/min), EE =20mm

Unif: 5% (1s, 400pts)

APPLIED MATERIALS.

a-Si:H single layer uniformity change

- With original RF feed
 - Average thickness 390 nm
 - Standard deviation of thickness, $\sigma_t = 20 \text{ nm}$
 - Non-uniformity = 4.3%

non - uniformity (NU) = $\frac{t_{\text{max}} - t_{\text{min}}}{t_{\text{max}} + t_{\text{min}}}$

- After modifying the RF feed location
 - Average thickness unchanged
 - $-\sigma_t = 21$ nm
 - Non-uniformity was 3.2%
- Insignificant change in thickness profile and uniformity

Applied Materials External

APPLIED MATERIALS.

Solar cell performance uniformity

- Uniformity of Jsc
 - Improved from 7.9% to 2.9%
- Uniformity of Voc
 - Improved from 4.8% to 3.3%
- Uniformity of FF
 Improved from 5.8% to 4.1%

Development of High Dep Rate uc-Si Processes

Conventional Approach [1]

- High H₂ dilution ratio, R~100
- High total flow
- Medium RF power (0.5~0.7W/cm²)
 Results
- Good cell efficiency
- Medium deposition rate
- Large area
- [1] B. Rech, etc., Solar Energy Materials & Solar cells 66 (2001) 267-273.

Pure Silane Approach [2]

- Zero H₂ dilution ratio, R=0
- Very low total flow
- Small RF power

Results

- Good cell efficiency
- Medium deposition rate
- Small area

[2] M. N. Donker, etc., J. Mater. Res., Vol. 22. No. 7, Jul 2007.

Compromising Approach

- Low H_2 dilution ratio, R~30
- Medium total flow
- High RF power

Results

- Good cell efficiency
- High deposition rate
- Large area

Applied Materials External

Film properties at high deposition rate

TEM shows clear column structure, which agrees with XRD and Raman measurement.

Applied Materials External

(220)

50

580

27

IV and QE performance comparison

- The high deposition rate one (HD with DR=660A/min) have initial IV performance comparable to its reference with DR=400A/min.
- All the data shown is taken 6 months after cell fabrication, high deposition rate ones show stable performance same as reference.
- LID (two sun light intensity, 300 hours, 50°C) performance is the same for high deposition rate and its reference. (Data not showing here.)

- Same top cell QE response for all the cells. No obvious damage/change to top cell under high deposition rate for bottom cell I layers.
- High deposition rate bottom cells have QE response comparable to its reference.

SunFab: Unlocking Cost Reduction

SunFab Solar Projected Output

- 60 MWp (TJ) per year
- 0.75 km² of panels per year
- 5.7m² panels largest in the world
- >20,000 homes (3kWp each)
- \$1/Watt Production Cost 2010

APPLIED MATERIALS.

1 min of Solar energy > 1 year of world energy consumption

Display & SunFab Solar

Applied Materials External

APPLIED MATERIALS.

think it. apply it.

APPLIED MATERIALS.

Cell to Cell Connection

APPLIED MATERIALS.

Applied Materials External

APPLIED MATERIALS.

Applied Materials External

APPLIED MATERIALS.

μc-Si:H layer uniformity change

q.

- No significant thickness change
- Fc: crystalline fraction
 - Calculated from film Raman absorption spectrum
 - Raman condition:
 - Laser wavelength = 532 nm
 - Temperature = -49 °C
 - fc is defined as:*

$$fc = \frac{I_c \times 100}{I_c + \left(0.1 + \exp\left(-\frac{100}{250}\right)\right)I_a}$$

- With modified RF feed
 - fc non-uniformity significantly improved from 8.5% to 3.0%

* R. E. I. Schropp and M. Zeman, Amorphous and microcrystalline silicon solar cells, Kluwer Academic Publishers, 1998 Display & SunFab Solar