neoplascontrol

solutions for your operations in gases and plasmas

Mid Infrared Absorption Spectroscopy System for Plasma Monitoring

Q-MACS Team

in cooperation with INP Greifswald

2009

www.neoplas-control.de

neoplascontrol

Introduction

QCLAS Technology

Applications of the Q-MAC System

- Plasmas in Surface Treatment Industry
- Plasmas in Semiconductor Industry
- Q-MACS Multi Component

Quantum-Cascade-Measurement and Control System – Q-MACS®

- problem: real-time and in-situ control of plasma processes and trace gas analysis with a detection limit up to ppt
- idea: application of a new class of infrared lasers: quantum-cascade-laser (QCL)
- result: development of compact and easy to use systems for industrial and scientific applications

<mark>Q</mark>∙macs

Q-MACS: Quantum Cascade Laser Measuring and Control System

Measuring Principle

neoplascontrol

Principle:Absorption of the laser beam by plasma / gas moleculesResult:On-line concentration of molecules

Why in the Mid IR?

neoplascontrol

- ➔ many molecules ...
 - only detectable in the (3 ... 20) µm spectral range (MIR)
 - with higher absorption cross sections (compared to VIS, NIR, ...)

Wavelength λ [µm]

	IR - TDLAS	IR - QCLAS	CRDS	FT - IR
sensitivity (I ₀ -I)/I ₀	☺ (10 ⁻³ 10 ⁻⁵)	☺ (10 ⁻³ 10 ⁻⁵)	☺ (10 ⁻³ 10 ⁻⁵)	<mark>⊗</mark> (10 ⁻² …10 ⁻³)
selectivity Δv	☺ (10 ⁻⁴ 10 ⁻³) cm ⁻¹	☺ (10 ⁻³ 10 ⁻²) cm ⁻¹	☺ (10 ⁻⁴ 10 ⁻³) cm ⁻¹	❷ 0.1 cm⁻¹
tunability	⊜ (10100) cm⁻¹	<mark>⊗</mark> (110) cm ⁻¹	<mark>⊗</mark> (110) cm ⁻¹	© whole MIR
time resolution ∆t	🕲 ms (µs)	🙂 msns	🕲 sms	😕 mins
operation/ detection	 (20 - 130) K ⊗ LN₂ detectors 	near room TTE detectors	 Reeds highly reflective mirrors mirrors selected for single wavelength 	☺ room T ⊗ LN ₂ detectors

R. Wilcox, 13. August 2009, San Jose

7

Q-MACS Technology – wide spread applications

Plasma Industry / Exhaust Gas Treatment / Environmental Technology

Process Control in Deposition and Etching Reactors Semiconductor Industry Car Industry Medicine Technique Combustion Fusion Devices UF_6 enrichment ...

neoplascontrol

Technology

- quantum cascade laser absorption spectrometer
- identifies gases and plasma species and quantifies their concentrations
- very low detection limits (up to ppt)
- enables in-situ measurements
- very high temporal resolution (real-time, ns ms s)
- works at room temperature

Product variants for customized high performance diagnostics

Q-MACS Basic	Q-MACS Process	Q-MACS Trace compact	Q-MACS Process Fibre
key component, laser head with control- and supply unit	high sensitive real-time gas and plasma sensing	trace gas detection and environmental monitoring	measurement and control system for plasma etch systems

Q-MACS Basic

- key component for all Q-MAC Systems
- for operation with pulsed and cw QCLs
- laser head with control and supply unit for applications in spectroscopy

Product Portfolio

neoplascontrol

TO-3 Packaging of QCL in Q-MACS Applications

For robust handling in industrial environment

Product Portfolio

neoplascontrol

Q-MACS Multipass optics

- efficient solution to increase the effective absorption length
- include a robust and compact set of gold coated mirrors
- flange mounted for in-situ installation at plasma chambers
- allow a wide range of possible absorption lengths

neoplascontrol

Q-MACS Process with IR-fibre coupled to the industrial plasma reactor for surface treatment

Change of the BCl₃ signal in an industrial plasma process

neoplascontrol

Q-MACS Process Fibre - concept

- optical coupling of the radiation at the process chamber via IR fiber
- reflective elements in-situ (mirror, wafer) for detecting via single view port
- optic board with multi channels for referencing the laser emission

Q-MACS Process Fibre

Development objectives

- monitoring of species concentration relevant for silicon plasma etch processes via Quantum Cascade Laser Measuring and Control System (Q-MACS)
- adaptation of Q-MACS for in-situ application at process tools with single access (one window)
- process control via IR laser absorption spectroscopy
- monitoring of the etch progress via online depth control measurements

Q-MACS Process Fibre

- realization of a tool for in-situ monitoring of silicon plasma etching
- development and design of a compact and integrable product
- process control with Q-MAC System possible
- enables strong improvements in process stability and reproducibility

at a HART III plasma etch system

neoplascontrol

Q-MACS Process fibre - 2008 edition (overall view) control unit - optical unit - process coupling unit with IR fibre

neoplascontrol

Q-MACS Process fibre - 2008 edition process coupling unit with IR fibre

neoplascontrol

Q-MACS Process Fibre - Dilution of SiF₄ with Ar $p=50 \text{ mTorr}, \text{ SiF}_4 \text{ flow} = 200 \text{ sccm}$

neoplascontrol

neoplascontrol

Q-MACS Process Fibre with 2 QCL Heads

Active Controlling of Gas Mixture of N₂, SiF₄ und C₄F₆, p= 0.3mbar

R. Wilcox, 13. August 2009, San Jose

Active Controlling of SiF₄ Concentration in Plasma Reactor, p= 0.3 mbar

Future Developments of Q-MACS Technology

neoplascontrol

Examples of optimized and compact Q-MAC Systems

Summary

neoplascontrol

Principle of QCLAS

Q-MACS Technology

Applications of the Q-MAC System

- Surface Treatment Industry *time resolved in-situ species monitoring*
- Semiconductor Industry process monitoring
- Q-MACS Multi Component multiple species monitoring, MFC calibration

• CxHy, CO, CO₂, NO, NO₂, N₂O, NH₃, NF₃, BCl₃, B₂H₆, SiF₄, C₄F₆, COCl₂, PH₃, H₂O, O₃, SO₂, OH, HF, HCl, OCS, HCN, COF₂, H₂O₂, SF₆, SO₃, HNO₃, CH₃CL, H₂CO, CH₃OH and many others