In-Situ Measurement of the Relative Thermal Contributions of Chemical Reactions and Ions During Plasma Etching

Plasma and CVD Processes 17
213th Meeting of the Electrochemical Society

M.R. Tesauro Qimonda Dresden GmbH & Co. OHG, Germany
G.A. Roche KLA-Tencor, SensArray Division
Overview

- Background: Chemical + Physical Removal
- Experimental Method
- Results and Discussion
- Conclusions
Background: Chemical + Physical Removal

Experimental Method

Results and Discussion

Conclusions
Chemical & Physical Removal

- Synergistic Effects
 - Chemical
 - Species
 - Temperature
 - Physical
 - Ion Current
 - Ion Energy

Attributes of Substrate Temperature Measurement

\[T_{substrate} = \text{Heat in} - \text{Heat Out} \]

- **Heat in**
 - Ion current (incl. recombination)
 - Heat of condensation
 - Exothermic reactions
 - Process gas convection
 - Radiation

- **Heat Out**
 - Convection to process gas
 - Loss through electrostatic chuck
 - Radiation
Why we care about this topic

- Evidently temperature spatial correlation to CD variation.
- Routine recipe variation does not change response.
- Many hardware components are potentially responsible.
- Objective: Identify mechanism and cut troubleshooting time.
Sensorwafer Description

Temperature Measurement: 65 sites on 300mm wafer

Voltage Measurement: 7 sites on 300mm wafer

\[V_{RF} \sim V_s \cdot n_s \cdot \omega^2 \]
Sensor Wafer Pre-Processing

Integral Sensor Wafer Coated with 3um PFR IX420H i-line Resist, 2mm EBR

Manual Solvent Removal of Resist on Wafer Half Left of Notch

"No Resist" Sensor Group

Data Not Used

"Resist" Sensor Group
Temperature

Resist T_{avg}, steady-state
(sensors on resist coated half)

Si T_{avg}, steady-state
(sensors on bare Si half)

$\Delta T_{ss \ avg} = k_1A (\Phi_r - \Phi_Si)$

Assumption: for resist etch highly selective to Si:
$(\Phi_r - \Phi_Si) = \text{Heat of Chemical Reaction}$

Assumption: for resist etch highly selective to Si:
Both sensor wafers were run through the following conditions:

1. Coat temperature wafer – remove resist from left side
2. CCP Etch: 11 step N2 / H2 DOE
3. CCP Etch: 5 single-factor N2 / H2 test runs
4. CCP Etch: 5 step N2 / H2 screening test
5. CCP Etch: 5 step Ar / O2 screening test
6. CCP Etch: 2 step N2 / H2 & Ar / O2 high pressure test
7. ICP Etch: 2 step Cl2 test (5mT, 50mT)
8. ICP Etch: 2 step O2 test (5mT, 50mT) – 50mT to endpoint
Sensorwafer data traces

 Temperatures

 POR 100W 300W FRC-11 FRC+5

 Temperatures

 POR 100W 300W FRC-11 FRC+5

 Vrf N2H2, 30mT O2Ar, 30mT
 POR, 100W, 300W, FRC-11, FRC+5 POR, 100W, 300W, FRC-11, FRC+5

 CCP reactor
 P=200mT, 200Wb,
 a) N2=200, H2=250,
 b) Ar=100, O2=10
Exothermic Chemical Etch Components: Experimental Data

N2 / H2 Chemistry:
CCP Etch Chamber

1. Exponential Data Fit
2. Extrapolate to Steady-State
3. Calculate ($\Phi_r - \Phi_{Si}$)
4. Estimate removal rate based on C-C bond strength
Exothermic Chemical Etch Components: Experimental Data

N2 / H2 Chemistry:
CCP Etch Chamber

- However, the Si half of sensor wafer was hotter!
- Assumption is that thick resist (~3µm) acts as an insulator to ion bombardment
Both Etch rate and Vrf show strong response to RF Bias power. Temperature has a modest response to RF power. This data supports the notion that Etch Rate is dominated by physical mechanism.
Sensorwafer Response: Resist Clearing
Mean temperature by half wafer zones ...

... ICP reactor, 50mT O2
Clearing Resist from sensorwafer

Now that resist is thinned (≤ 550 nm), resist half runs hotter than bare Si. Temperatures of each half converge as resist clears.
ICP Etch Chamber signals for Resist etch end point O$_2$ Chemistry

Integral O$_2$ end point
BiasZ, CO emission

CO emission vs Time (s)

Resist clearing

Bias Impedance (Ohms)

CO line
Bias Z
Etch-to-Clear Resist, 50mT O₂
(All sensors, same scale throughout)

"Hot spot" disappears as resist clears

Integral corrected Temp 50mT O₂ at 176s
Integral Corrected Temp 50mT O₂ at 200s
Integral corrected all sensors 50mT O₂ at 232s

Integral Corrected Temp all sensors 50mT O₂ at 257s

RF on 176s clearing

Si RES
Case Study: Chemical / Physical Components and Isotropic Mask Trim Etch

Poor In-line CD Uniformity

Width CD Depends on Isotropic Etch Component

Lower substrate temperature = reduced isotropic etch rate = wider CD
Case Study: Root Cause Identification

Poor In-line CD Uniformity

Sensorwafer response

Temperature

Vrf

“Heat Out” problem not “Heat In”
Correction Verification

Sensorwafer response

Poor In-line CD Uniformity

CD non-uniformity problem localized to heating/cooling apparatus of ESC

Temp 20C Cathode
range = 10 C

Temp 40C Cathode
range = 3.5 C

CD non-uniformity problem localized to heating/cooling apparatus of ESC
Conclusions / Summary

The Resist/Bare Sensorwafer Method Shows Promise
- Can detect small but consistent differences in temperature and Could benefit from:
 - Thinner coating for improved sensitivity
 - "Checkerboard" pattern to avoid chamber-related asymmetries
 - Examine isotropic removal vs. vertical removal

Use of Temperature & Volt Sensorwafers together is proving useful
- Quickly ascertain source of chamber asymmetry
Acknowledgements

Professor Costas Spanos
The University of California, Berkeley

Matthias Voigt
Lithography Track Expert
Qimonda Dresden GmbH & Co. OHG