Fluorine:
Optimised and sustainable cleaning agent for CVD processes

Plasma Etch Users Group Meeting
15th May, 2008.
Confidentiality Statement

This presentation has been prepared exclusively for the benefit and use of The Linde Group and does not carry any right of publication or disclosure, in whole or in part, to any other party.

This presentation is the property of The Linde Group. Neither this presentation nor any of its contents may be used for any purpose without the prior written consent of The Linde Group.

The Linde Group makes no representations as to the accuracy, completeness or fairness of this presentation and so far as is permitted by law, no responsibility or liability whatsoever is accepted by The Linde Group for the accuracy or sufficiency thereof or for any errors, omissions, or misstatements relating thereto.

The Linde Group makes no express or implied product warranties on the basis of this presentation.
Outline

Industry driving forces

Potential benefits of F_2

Cleaning for LPCVD

Cleaning for PECVD

Discussion of results / next steps

Summary
Industry Driving Forces
ITRS ESH 2007 extracts

ESH Difficult Challenges

Need to develop equipment and processes that meet technology demands while reducing impact on human health, safety and the environment, both through the use of more benign materials, and by reducing chemical quantity requirements through more efficient and cost-effective process management

Need to reduce emissions from processes using high GWP chemicals

Need to reduce total CO₂ equivalent emissions
Technical Thrust ESH Technology Requirements – Interconnect

PFCs are used extensively in interconnect dry etch and chamber cleaning applications. A potential new source of substantial PFC emissions is 3D interconnect where PFC such as SF$_6$ are being considered for through-silicon via etch.... In recent years, chamber clean processes that do not emit high global warming potential by-products have been successfully developed. This concept should be carried over to etch.

With increased focus on energy conservation, the power requirements of plasma enhanced CVD and etch equipment must be minimised.

Technical Thrust ESH Technology Requirements – Front End

Continued use of PFCs in front end plasma etch as well as chamber cleans will necessitate near term optimisation / increased gas utilisation. Over the longer term, alternative chemistries for PFCs that do not emit PFCs as by-products need to be developed.
Industry Driving Forces
ITRS ESH 2007 – Chemical Restrictions Table

ESH Intrinsic Requirements

- The risk assessment should include a check of the chemical against the Chemical Restrictions Table, to ensure the chemical is not banned or under some regulatory watch.

<table>
<thead>
<tr>
<th>Issues & Characterization</th>
<th>Show Stopper</th>
<th>High Restriction Potential</th>
<th>Medium Restriction Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Chemicals or Raw Materials Subject to Actual or Potential Manufacture or Use Restrictions</td>
<td>Asbestos Materials Certain glycol ethers Polychlorinated biphenyls Fully halogenated chlorofluorocarbons (CFCs) Carbon tetrachloride 1,1,1 trichloroethane Halons 1211, 1301, 2402 Hydrobromofluorocarbons (HBFCs) HCFC 141b Polybrominated biphenyls (PBBs) and their ethers/oxides (PBDEs) Cadmium compounds Lead compounds Mercury compounds Hexavalent Chromium compounds Other chlorinated organic compounds Other brominated organic compounds</td>
<td>Hydrochlorofluorocarbons (HCFCs) Perfluoroctyl sulfonates (PFOS) Cadmium compounds Lead compounds Mercury compounds Hexavalent Chromium compounds Other chlorinated organic compounds Other brominated organic compounds</td>
<td>Perfluorocompounds (PFCs) - SF6 - C4F10 - C2F6 - C5F12 - CF4 - C6F14 - NF3 - C4F8 - CHF3 - C3F8 Hydrofluorocarbons (HFCs) Perfluorooctanoic acid (PFOA) and its salts Certain phthalates Phenols Perfluoroalkyl sulfonates (PFAS) Ethylene Oxide Ethylene Dichloride Polyaromatic hydrocarbons Antimony Trioxide Beryllium Polyvinyl chloride (PVC) Other brominated flame retardants</td>
</tr>
</tbody>
</table>
Why Fluorine for dry cleaning?
Better for the environment.

<table>
<thead>
<tr>
<th>Clean Gas</th>
<th>Atmospheric Lifetime (Years)</th>
<th>Global Warming Potential (GWP(_{100}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF(_4)</td>
<td>50,000</td>
<td>6,500</td>
</tr>
<tr>
<td>C(_2)F(_6)</td>
<td>10,000</td>
<td>9,200</td>
</tr>
<tr>
<td>C(_3)F(_8)</td>
<td>2,600</td>
<td>7,800</td>
</tr>
<tr>
<td>SF(_6)</td>
<td>3,200</td>
<td>23,900</td>
</tr>
<tr>
<td>NF(_3)</td>
<td>740</td>
<td>10,800</td>
</tr>
<tr>
<td>C(_5)F(_8)</td>
<td>0.98</td>
<td>90</td>
</tr>
<tr>
<td>COF(_2)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C(_3)F(_6)</td>
<td><<1</td>
<td><1</td>
</tr>
<tr>
<td>F(_2)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
F₂ Energy Footprint

1. Raw Materials
2. F₂ Manufacture
3. Purification
4. Compression
5. Package

- Road Transport
- Sea Transport
- Road Transport

- Plasma Dissociation
- Process
- Abatement

Zero PFC Emissions
Why Fluorine for dry cleaning?
More cost effective

1.5 moles F_2 required to produce same amount free Fluorine as 1 mole of NF_3 or ClF_3
50% higher flow F_2 required compared to NF_3 to provide same number of Fluorine radicals

Gas is typically sold by weight – greater cleaning performance provided per kg F_2

- Molecular mass $F_2 = 38 \times 1.5 = 57$
- Molecular mass $NF_3 = 71$
- Molecular mass $ClF_3 = 92.5$

1kg F_2 provides same mass of F radicals as
- 1.25kg NF_3
- 1.62kg ClF_3

If we assume same cost per kg, significant material cost savings possible, but

- NF_3 manufacture generally uses F_2 gas as a feedstock, so direct electrolysis of F_2 from HF is inherently cheaper
- NF_3 / ClF_3 must be purified, packaged and shipped

1kg on-site generated F_2 is not more expensive than 1kg cylinder NF_3 or ClF_3
On-site F₂ for dry cleaning
Process Experience

Thermal clean for 300mm LPCVD – developed since 2002

- Improved selectivity demonstrated compared to ClF₃
- Improved etch rate (shorter cleaning time) compared to NF₃
- Lower temperature cleaning compared to NF₃
- No difference in etch rates or clean effects observed compared to cylinder F₂
- No restrictions in clean time due to cylinder size
- 100% F₂ available for cleaning – blending option available to meet any process requirement
- Higher purity - potential benefits for film quality and / or clean frequency

“We have experienced good cleaning performance in the process developed for the TELFORMULA tool using BOC on-site fluorine generation system”
Source: Yasuyuki Kuriki, TEL VP and GM, thermal processing systems. TEL press release Sep-04

Currently used in high volume 300mm production in:
Korea, China, Singapore, France
Extension to PECVD Chamber Cleaning
Investigating F_2 flows for a customer at our San Marcos R&D Facility – we found a significant increase in F_2 flow is possible in the RPS.
Activation of Fluorine Cleaning Gases

Bond Energies require high energy input for PFCs

<table>
<thead>
<tr>
<th>Bond Energies [kJ / mol]</th>
<th>Bond Energies [kJ / mol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>F---F</td>
<td>SF5---F</td>
</tr>
<tr>
<td>F---F</td>
<td>159</td>
</tr>
<tr>
<td>F2N---F</td>
<td>SF4---F</td>
</tr>
<tr>
<td>FN---F</td>
<td>248</td>
</tr>
<tr>
<td>N---F</td>
<td>SF3---F</td>
</tr>
<tr>
<td></td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>SF2---F</td>
</tr>
<tr>
<td></td>
<td>316</td>
</tr>
<tr>
<td></td>
<td>SF---F</td>
</tr>
<tr>
<td></td>
<td>326</td>
</tr>
<tr>
<td></td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>351</td>
</tr>
<tr>
<td></td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>385</td>
</tr>
</tbody>
</table>

From Linde Astron Experiments: Limit of Throughput @ 10 kW Input Power

F₂: 44 slm

\[
\text{F₂: 44 slm} = 1.96 \text{ mol / min} \\
(1.96 \text{ mol / min}) \times (159 \text{ kJ / mol}) \\
= 312 \text{ kJ / min} = 5.2 \text{ kW for 3.9 mol / min F}.
\]

NF₃: 9 slm

\[
\text{NF₃: 9 slm} = 0.401 \text{ mol / min} \\
(0.401 \text{ mol / min}) \times (248 \text{ kJ / mol} + 278 \text{ kJ / mol} + 316 \text{ kJ / mol}) \\
= 338 \text{ kJ / min} = 5.6 \text{ kW for 1.2 mol / min F}.
\]

> 3x F* at maximum flows from F₂ vs. NF₃

THEORETICAL BOND ENERGY SUPPORTS HIGH FLOW CAPABILITY SEEN ON RPS EXPERIMENTS
F₂ is much easier to form a plasma than NF₃
— At full RPS power, 3.3 X the F content can be used

<table>
<thead>
<tr>
<th></th>
<th>F₂</th>
<th>NF₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond strength (kJ/mol)</td>
<td>F-F</td>
<td>F₂N-F</td>
</tr>
<tr>
<td></td>
<td>159</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>F₂N-F</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>N-F</td>
<td>316</td>
</tr>
<tr>
<td>Activation Energy for 1 mol F*</td>
<td>80 kJ</td>
<td>281 kJ</td>
</tr>
</tbody>
</table>
Process Benefits to Customer - Summary

• Plasma cleaning rate for large PECVD chambers is limited by high energy required to dissociate NF₃.

• Fluorine overcomes this limitation in any size plasma source and allows higher flows of clean gas to improve productivity at a lower power.

• In Gen 6 production on a range of process tools, fluorine has been demonstrated to
 — Reduce clean times by 30% compared to NF₃ (flow restrictions prevent further demonstrated improvements)
 — Reduce mass consumption by 20% (6 tons / month NF₃ replaced by 5 tons / month F₂)
 — Reduce RPS power consumption by >50%
 — Increase the interval between cleans

• There is no difference in film quality or end product quality from F₂ cleaning compared to NF₃ cleaning
 — For Thin Film Solar applications, the absence of N inclusions is reported to be very advantageous
Extension to PECVD Semicon (Solvay)
F₂ mixtures as chamber cleaning gas for PECVD systems not RPS assisted

Those systems are still responsible for high greenhouse emissions. F₂ mixtures offer a market available alternative which is environmentally friendly, fully compatible, cost effective and which enhances throughput.
Alternative chamber cleaning with F_2 for semiconductors

Project Target: Feasibility study for the use of F_2 as a chamber cleaning gas with an industrially used plasma-CVD reactor (AMAT P 5000)

Motivation: Reduce global warming emissions caused by NF_3 or carbon-fluorides used for chamber cleaning

Location: Fraunhofer IZM, Munich; CMOS compatible class 10 clean room

Equipment: Applied Materials (AMAT) P 5000 platform, lamp-heated, plasma-enhanced CVD chamber for dielectric films

Wafer Size: 200 mm

Film Types: Silane-based PECVD of SiO_2 and Si_3N_4
Results from repeatability runs

Ar/F₂/N₂ Clean Recipe:
- appr. 1,5 x faster than AMAT BKM Clean (CF₄)
- appr. 1,2 x faster than NF₃ BKM Clean

Low particle values:
< 50 adders - as good as with CF₄ Clean

Wafer-to-Wafer Non-Uniformity:
0,6 % - identical to AMAT BKM Clean

Within-Wafer Non-Uniformity:
1,6 % - identical to AMAT BKM Clean

Chamber, Shower Head and Susceptor OK after visual inspection

Ar/F₂/N₂ cleaning gas mixture fully usable with AMAT P 5000 CVD chamber
Comparison of different cleaning chemistries

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ArN2F2</td>
<td>1521</td>
<td>12</td>
<td>1950</td>
<td>8</td>
<td>900</td>
<td>180</td>
<td>0.31</td>
<td>0.31</td>
<td>2.1</td>
<td>800</td>
<td>570</td>
</tr>
<tr>
<td>CF4</td>
<td>850</td>
<td>2</td>
<td>1710</td>
<td>9</td>
<td>2005</td>
<td>1550</td>
<td>6.09</td>
<td>5.26</td>
<td>5.5</td>
<td>1000</td>
<td>570</td>
</tr>
<tr>
<td>NF3</td>
<td>< 1200</td>
<td>20</td>
<td>< 1570</td>
<td>20</td>
<td>150</td>
<td>150</td>
<td>0.48</td>
<td>0.38</td>
<td>0.6</td>
<td>600</td>
<td>570</td>
</tr>
<tr>
<td>C2F6/O2/NF3 (Average)</td>
<td>1116</td>
<td>10</td>
<td>1303</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
<td>900</td>
<td>1000</td>
</tr>
<tr>
<td>C2F6/O2/NF3 (Outer Clean)</td>
<td>439</td>
<td>11</td>
<td>716</td>
<td>47</td>
<td>1560</td>
<td>750 / 60</td>
<td>4.62/0.19</td>
<td>3.96</td>
<td>1.8</td>
<td>900</td>
<td>200</td>
</tr>
<tr>
<td>C2F6/O2 (Inner Clean)</td>
<td>1792</td>
<td>8</td>
<td>1890</td>
<td>33</td>
<td>1850</td>
<td>900</td>
<td>5.54</td>
<td>4.58</td>
<td>9.0</td>
<td>900</td>
<td>200</td>
</tr>
<tr>
<td>NF3</td>
<td>932</td>
<td>9</td>
<td>1300</td>
<td>20</td>
<td>140</td>
<td>140</td>
<td>0.44</td>
<td>0.36</td>
<td>0.6</td>
<td>350</td>
<td>800 **</td>
</tr>
</tbody>
</table>

NF3 clean limited by etch uniformity

*Max spacing of universal-chamber ; dielectric CVD chambers are limited to 570 mils
**Max spacing of W-chamber ; dielectric CVD chambers limited to 570 mils
Comparison of different cleaning chemistries

- **Gas consumption** -

<table>
<thead>
<tr>
<th>Cleaning gas</th>
<th>Layer Thickness [µm]</th>
<th>SiO₂</th>
<th>Si₃N₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArN₂F₂</td>
<td>1.0</td>
<td>47.3</td>
<td>0.245</td>
</tr>
<tr>
<td>CF₄</td>
<td>1.0</td>
<td>84.7</td>
<td>8.598</td>
</tr>
<tr>
<td>NF₃</td>
<td>1.0</td>
<td>60.0</td>
<td>0.480</td>
</tr>
</tbody>
</table>

Cleaning time includes a 20% overclean time to make sure all areas of the chamber are cleaned.
Summary

F_2 provides the following benefits for PECVD chamber cleaning:

- Zero environmental impact & reduced power consumption – an environmentally responsible choice
- Process throughput increase – reduced clean time.
- More cost effective cleaning, lower material bill, reduced power consumption
- Reliable and safe operations, fully proven in the semiconductor and flat panel display industries

By adopting F_2 gas, TMD will be contributing to the reduction of greenhouse gas emissions (based on the amount of CO$_2$ emissions) to zero from the cleaning process, whereas with NF$_3$ gas, zero gas emissions could not be achieved, even with detoxifying systems. *Toshiba Matsushita Display Technology Press Release 19-Sep-06*
Contact Details

Linde Electronics contact:

greg.shuttleworth@boc.com
paul.stockman@linde.com
electronicsinfo@linde.com

Solvay contact:

mark.looney@solvay.com
Marcello.riva@solvay.com

www.solvaychemical.us
Thank you for your attention