Greenhouse Gas Reduction and Energy Efficiency – Opportunities for Equipment Suppliers

Stanley Hughes

Senior Product Safety Manager, Applied Materials PLASMA ETCH USERS GROUP, May 15, 2008

think it. apply it.

APPLIED MATERIALS.

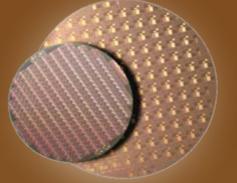
External Use

Sustainability is essential

- Meeting the needs of today without jeopardizing the ability of future generations to do so
 - People, Planet, Profit
 - Economy, Environment, Equity

Growing Importance of Sustainability

- Evidence of human caused global warming "unequivocal", says IPCC
- Water usage, fuel efficiency, erosion, preserving bio-diversity, pollution becoming important issues
- Changing weather patterns, drought, water shortage, floods, hurricanes etc.
- The BBC reported \$100B spent worldwide in 2007 on clean tech research and funding


High-Tech Industries Play a Big Role

- Worldwide electricity consumption for servers in 2005
 ~ 14 one GW power plants
- 2% of the world's CO₂ emissions from IT equipment
- 70-80% of energy used by IT is in manufacturing and transportation
- Overall manufacturing accounts for one third of world's global energy use

Enabling Growth by Driving Cost Reduction....

FIRST

Cost per transistor

1974	2004
4 trillion	1,400,000 trillion
10 cents	5 nano-dollars

20,000,000x Cost Reduction

Source: SIA, IC Knowledge LLC

THEN

Cost per area

1995	2005
0.3 million m ²	25 million m ²
\$30,000 / m ²	\$1,500 / m²

20x Cost Reduction

Source: Display Search, Nikkei BP, Applied Materials

NEXT

U

Cost per watt

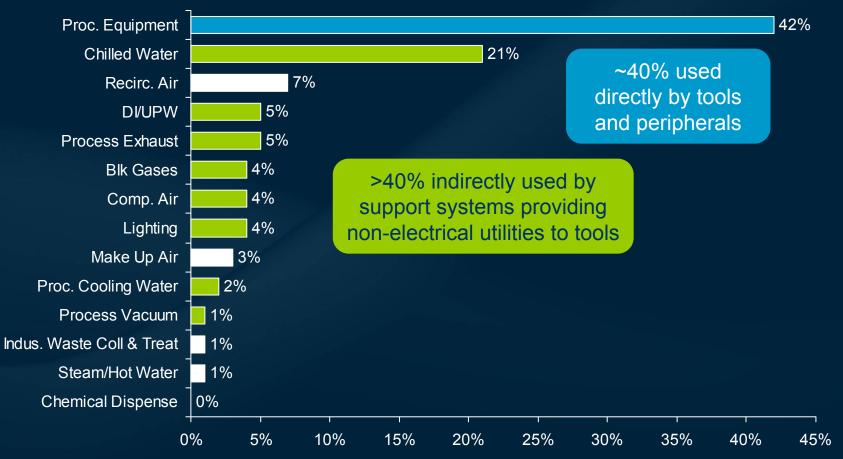
2007	2010	2012				
300MW	2GW	4GW				
\$1.45/W	<\$1.00/W	<\$.75/W				
2x Cost Reduction						

Applied Materials is accelerating Solar by reducing production costs

Setting Aggressive Goals

CORPORATE GOAL

Applied Materials will cut CO₂ equivalents by 20% or 50k tons by 2012

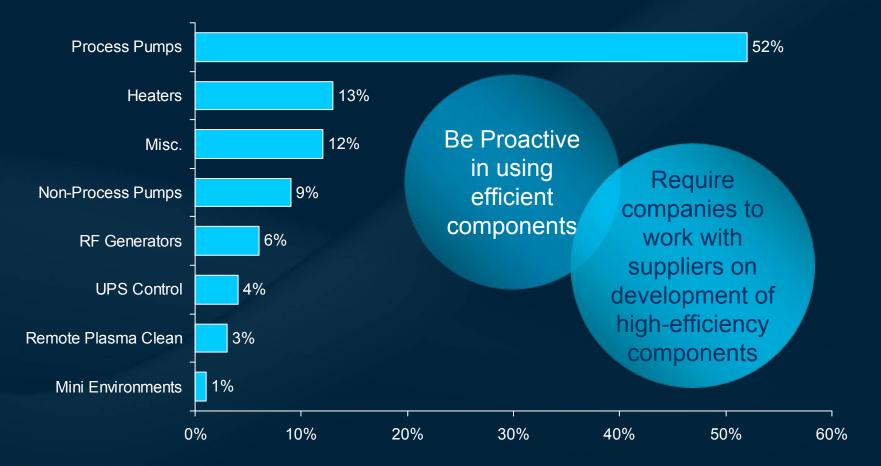

PRODUCT DESIGN GOAL

Applied Materials will reduce energy and resource consumption in overall product set by 20% by 2012

Tool Efficiency = GHG/Energy Opportunity

P

Wafer Fab Energy Usage Breakdown



Source: 1997, 2000, 2002 SEMATECH Energy Research, presented at SEMICON Europa 2005

APPLIED MATERIALS.

Engineers Designing Efficiency In

Power Usage on Semiconductor Manufacturing Equipment

Source: 1997, 2000, 2002 SEMATECH Energy Research, presented at SEMICON Europa 2005

Drive DfE Through Product Life Cycle

Tasks have been added to the PLC to achieve the product energy efficiency objective:

PLC **Determine** Market **Requirements Specification Product Development** Verification

9

Design for Energy Efficiency Activities

- Include energy efficiency in the Statement of Market Requirements.
- Establish baseline energy consumption based on an existing product.
- Analyze existing product designs.
- Include SEMI S23 energy consumption in the specification.
- Design and test to the specification.
- Fully characterize the new product according to SEMI S23 protocol.

Plan to maintain competitivenessaterials.

S

SEMI S23 Evaluation of New Products

Applied Materials has adopted SEMI S23 as the protocol for measuring and reporting energy consumption of semiconductor manufacturing equipment.

SEMI S23 ANN	Per Wafer							
	IDI	E PROCESS		SSING	SSING TO		Proc	Proc+Idle
	Total m3	Equiv kWh	Total m3	Equiv kWh	Total m3	Equiv kWh	Equiv Wh	Equiv Wh
Electricity		175,638		1,134,420		1,310,058	2,984	3,446
HVAC Heat Burden		58,033		334,606		392,639	880	1,033
Ultrapure Water (UPW, DI)	394	4,021	5,519	56,292	5,913	60,313	148	158
Process Cooling Water (PCW) <25°C	0	0	0	0	0	0	0	0
Process Cooling Water (PCW) >25°C	8,410	2,102	36,792	9,198	45,202	11,300	24	30
Nitrogen (Utilities N2)	763	191	7,358	1,840	8,121	2,031	5	5
Clean Dry Air (CDA)	2,365	348	37,896	5,571	40,261	5,919	15	16
Exhaust	591,615	2,366	1,656,523	6,626	2,248,138	8,992	17	24
House Vacuum	0	0	8,462	635	8,462	635	2	2
TOTAL		242,699		1,549,188		1,791,887	4,075	4,714

Energy per Unit Processed

cm

1

Applied Materials evaluates product energy consumption on a equivalent energy (S23) per unit processed basis.

- Simplifies comparison of product generations or dissimilar equipment performing similar functions
 - **Recognizes throughput improvement**
 - More consistent with ITRS kWh / cm² out
 - Per-unit-area metrics are applicable to most Applied Materials products

Basic SEMI S23 protocol is being tested on non-semiconductor products

APPLIED MATERIALS.

kWh / wfr-pass

1 cm

Wh / cm²-pass

Energy per mm

Simple S23 Energy Calculator

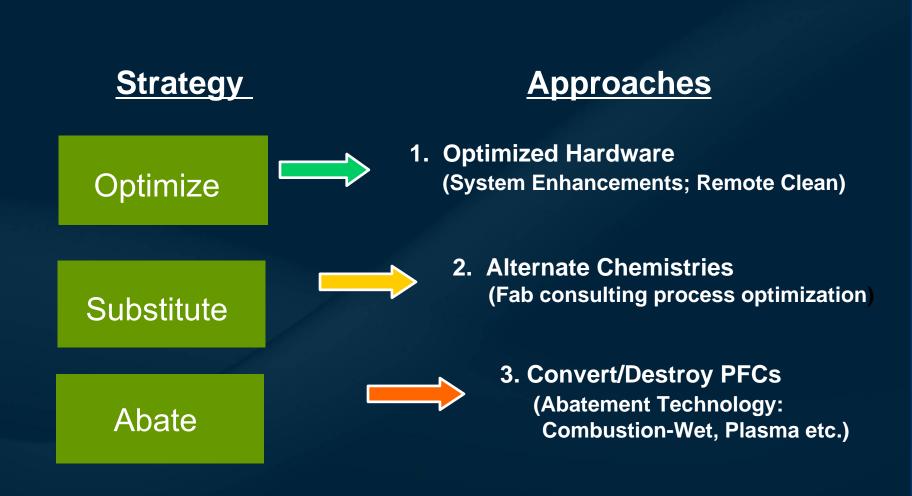
Enter Utilization and Consumption for up to two cases

Throughput in wafers per bour:	Utility Consumption Rate for Case 1								
Percentage of time successing:	62 70.00%	Utility	Electricity Real kW	יפעי (pres) מות	UPW (ati १/min	m) PCW १/mir	•		
Percentage of time in "standby 1":	15.00%	Processing	185	15				100	6
Percentage of time in "standby 2":		Standby 1	N2	Process E	Exhaust (Cooling E	xhaust	CDA	Vacuum
Percentage of time in "standby 3":			ℓ/min@STP	٤/min		ℓ / min	Δ7 (°C)	ℓ/min@STP	₹/min

See Energy Consumption:

Energy Consumption per cm² Processed

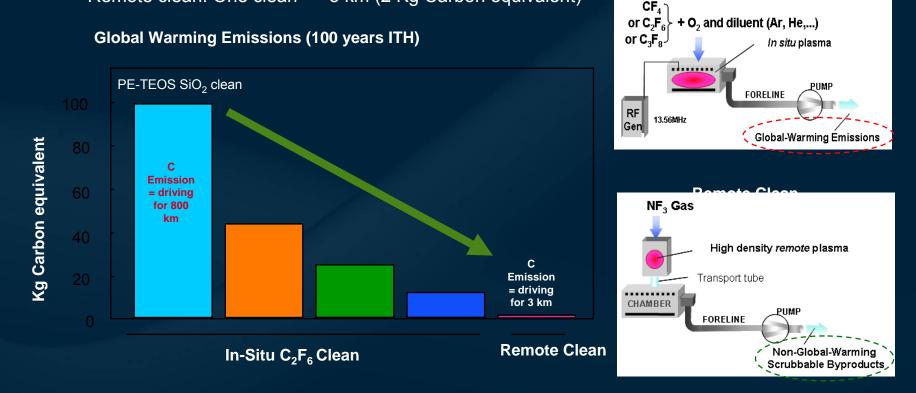
Utility	mWh / cm²								
	Electricity	UPW	PCW	N2	Exhaust	CDA	Vacuum	Heat Burden	Total
Processing Only	4,221.31	209.47	34.23	6.85	24.66	20.73	2.36	1,245.11	5,764.71


fer Pass

Energy per cm2

and the cases compared:

PERCENT CHANGE CASE 1 TO CASE 2 (CELLS ARE GREEN IF CASE 2 IS A REDUCTION FROM CASE 1): N2 Utility Electricity UPW PCW Exhaust CDA Heat Burden Vacuum Total Processing 1.43% 27.06% 4.26% 22.04% -6.23% 44.50% 9.85% 4.27% Only Total* 8.29% 2.63% 8.69% 6.08% 28.68% 22.04% 39.97% 14.19%


Multiple Offerings In Place to Reduce Carbon Footprint

APPLIED MATERIALS.

External Use

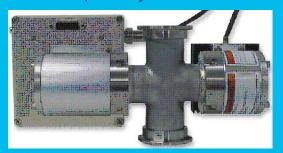
Environmental impact of Remote Clean

- Global warming emissions from CVD chamber cleaning were reduced by two orders of magnitude by switching from in-situ clean to remote cleans
 - In-situ clean: One clean = 800 km (100 Kg Carbon equivalent)
 - Remote clean: One clean = 3 km (2 Kg Carbon equivalent)

Upgrading chamber with remote clean reduces environmental impact ©

APPLIED MATERIALS.

In Situ Cloop


Hardware Optimization – System Enhancements

Remote Plasma Clean for 200mm Dielectric CVD

- Lower particle count
- Higher Throughput, less frequent cleans
- Longer process kit and consumable lifetime
- Higher Uptime, longer interval between PMs
- 98% reduction PFC emissions vs In-situ RF clean
- Annual CO₂ emissions reduction: 13,300 tons

Infrared Chamber Diagnostic Sensor (IRCDS) Dynamic Endpoint System

- Improved and consistent particle performance
- Enhanced process kit life
- Higher throughput with greater MWBC
- Available for 200mm DxZ; Ultima HPCVD
- Reduced NF3 usage
- Annual CO₂ emissions reduction: 104 tons*
 * RPC efficiency included

Assumes 50K WSPM, 1µ TEOS application, GWP 1g NF3 = 10970 g CO2 Equivalent

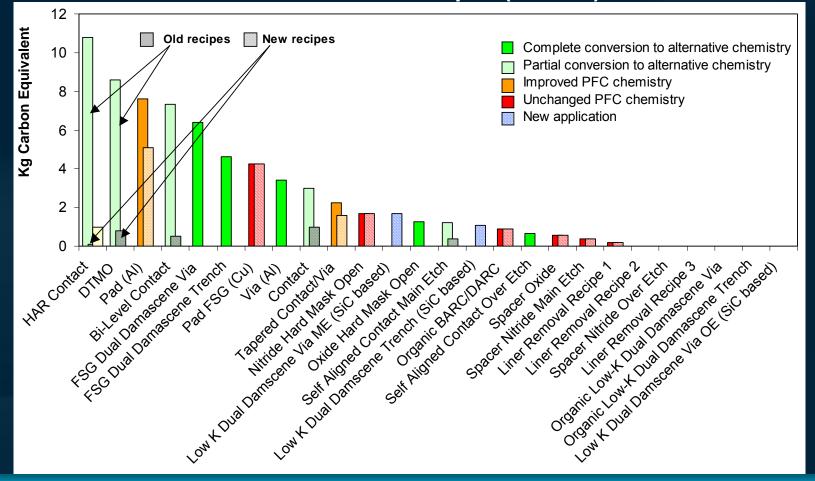
Hardware Optimization – System Enhancements

1kW and 3kW Thermoelectric Chillers

- Compact size (1kW unit shown)
- Reduced power consumption
- Reduce CO2 emissions
- High reliability, exceptional temp stability, high ramp rates.
- Available for 200mm MxP and DPS Etch
- Annual CO₂ emissions reduction: ~11 tons/system

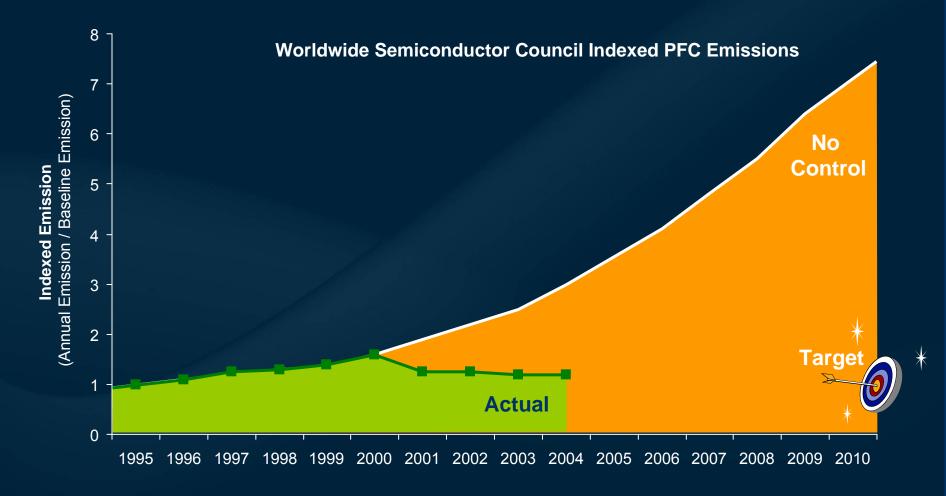
Energy-Saving Heat Exchanger Heat Exchanger Controller

Compact size (W:158mm, D:335mm, H:494mm)


- Lamp heating module for quick temperature control
- Built-in purge function
- Available for 200mm MxP, DPS Etch
- Annual CO₂ emissions reduction: ~2.5 tons/system

Assumes CO2=0.4kg/KWH (from JEITA)

Process Optimization – Fab Consulting Services


Example: Evolution of PFC consumption per wafer pass in Dielectric Etch - Old vs. new recipes (300mm)

Applied Materials Fab Consulting Service Can Help Identify and Implement Solutions

External Use

Industry Is On track To Meet the Challenge to Reduce PFC's

Source: World Semiconductor Council

APPLIED MATERIALS.

F)

Applied Material's Fab-wide Process Exhaust Solutions 🕅.

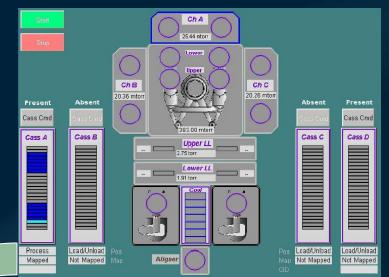
Vector Wet Abatement

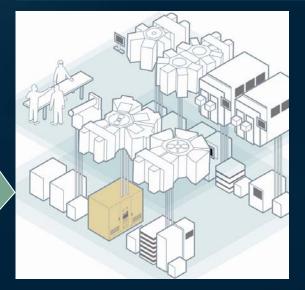
APPLIED MATERIALS.

CDO

7

Integrated Process and Abatement Solution




 Interface for Integrated control of abatement systems by process tool based on process operational conditions

 Umbilical cord links wafer position to subfab operation, matching energy consumption to need.

Potential Idle Mode Savings:

CDA >44% Fuel > 90% PCW >70% • Utility = Energy = Cost (For example: 1 liter/minute DI water usage represents 3,752 kWh/year*)

Summary

- Reduction of our carbon footprint is one of the great challenges for the sustainability of the semiconductor industry
 - Applied Materials is now implementing strategies to significantly reduce its carbon footprint and incorporating steps to lower the environmental impact of new tools
- Aggressive goals for carbon reduction are required
- Sustainability and DfE need to be incorporated into the product release process
- PFC emission reduction and energy saving solutions can help device manufacturers meet their environmental goals:
 - Optimized Hardware
 - Alternate Chemistries
 - Convert/Destroy PFCs Abatement technologies

