Etch Processes for Nano-scale Vertical MOS Devices

Hoon Cho, Pawan Kapur and Krishna C. Saraswat Department of Electrical Engineering, Stanford University, CA 94305

> PEUG Meeting July 20, 2006

Outline

1. Introduction of Vertical MOS Structures

2. Development a Spacer Process

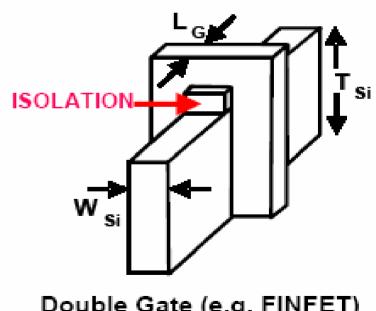
- Stable Process: widths down to 5nm (Demonstrated)
- Start with Improvement of photo resist profile
 - → Poly-Si block etch profile
 - → spacer mask profile
 - → Si etch profile

3. Improvement in Bulk Si-Fin or pillar etch profile

*This talk is based on:

H. Cho, P. Kapur, P. Kalavade and K. C. Saraswat, "A novel spacer process for sub 25nm thick vertical MOS and its integration with planar MOS device," *Silicon Nanoelectronics Workshop*, No. 5-16, 2005

Introduction of Vertical MOS Structures


Motivation

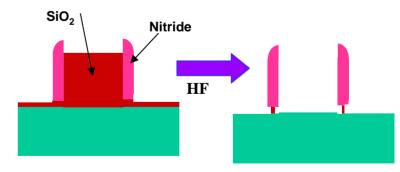
- Scalability
- Density
- Easy to achieve Double gate or Tri-gate MOSFET

Types of vertical structures

- The pillar structure
- FINFET
- Vertical S/D Transistor

→ Need Spacer process to build a nano-scale Si Fin or Pillar

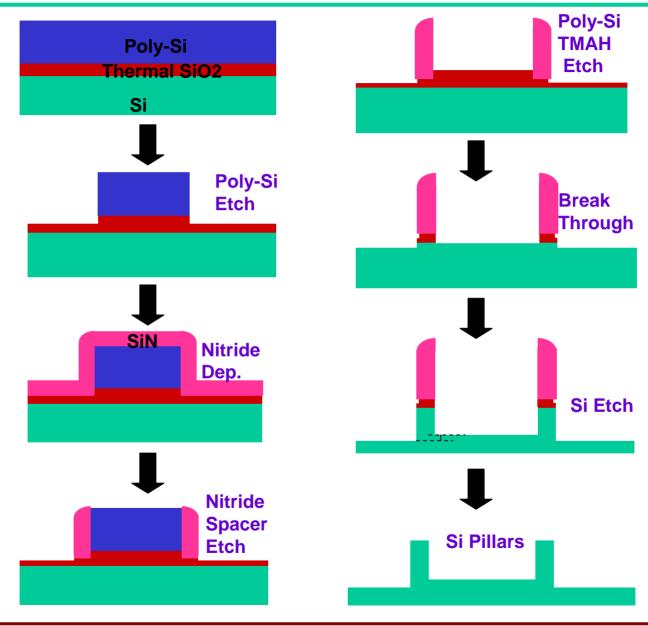
Double Gate (e.g. FINFET)


Robert Chau, ICSICT, 2004

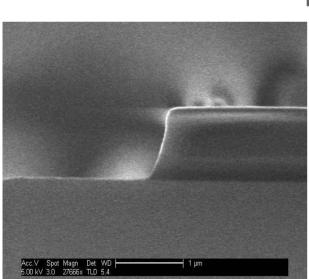
New Spacer Process

	Spacer	Block	Pros/Cons
1	SiN	SiO2	Once tested Nitride uniformity Oxide Undercut (lift-off)
2.	SiN	Poly-Si	Poly roughness Nitride uniformity
3.	SiN	Si/Ge	Etch selectivity to nitride/oxide
4.	SiO2	SiN	Stress issues
5.	SiO2	Poly-Si	#2 is a better option (nitride uniformity)
6.	Poly-Si	SiO2	A. High aspect ratio,
7.	Poly-Si	SiN	B.Mask erosion

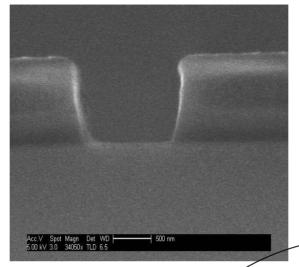
Pursued!!


Example) Spacer with oxide block

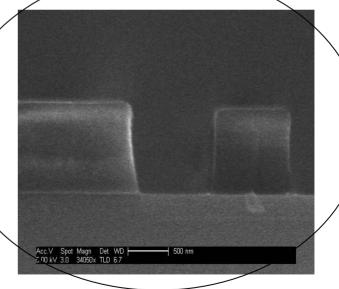
hard to make very thin spacer due to lift off !!


New Spacer Process Flow

Photoresist sidewall Optimization with Nikon


Critical as it dictates the Si-Fin's reverse tapering

- -1um positive photo resist
- -With a post expose baking: 1min, 110°C


Expose time= 200msec,

focus offset= -1

Expose time= 240msec , focus offset=0

Choose this

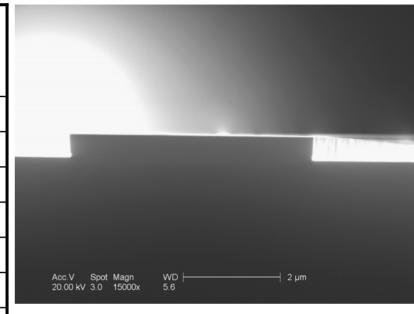
Expose time= 200msec , focus offset=1

Thickness Choices

➤Thermal oxide thickness: 15nm (Tradeoffs)

- > Thin: can be etched
- ➤ Thick: more undercutting during BT (relatively isotropic), higher AR

> Poly Block: 3:1 (Tradeoffs)


- > Thick: Mechanical stability and AR
- > Thin: Rounding (dynamic mask profile), Selectivity to Si

> Starting with Various Spacer thicknesses

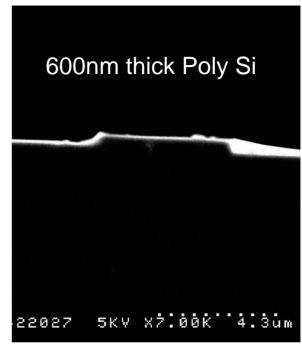
- > 30, 50, 100 and 200nm
- > For each had a 3:1 block
- > For 50nm (target) had two additional blocks: 6:1(300nm) and 12:1(600nm)

Poly-Si Etch-I: Lam 9400

Recipe	Break Through (BT)	Main Etch (ME)	Over Etch (OE) 20%
Etch time (sec)	10	End-Point	20
C2F6 (sccm)	100	0	0
HBr (sccm)	0	150	50
Cl2 (sccm)	0	0	0
O2 (sccm)	0	5	5
RF Power (W)	250	250	250
Pressure (mT)	13	10	15
M-Field (G)	0	0	0

Etch Rate	ME	OE
Poly Etch Rate (A/min)	1610	3530
Oxide Etch Rate (A/min)	130	35
Selectivity (Poly : Oxide)	~12:1	100:1

Problems: Reentrant


Sources of problems: Less deposition

and/or charging

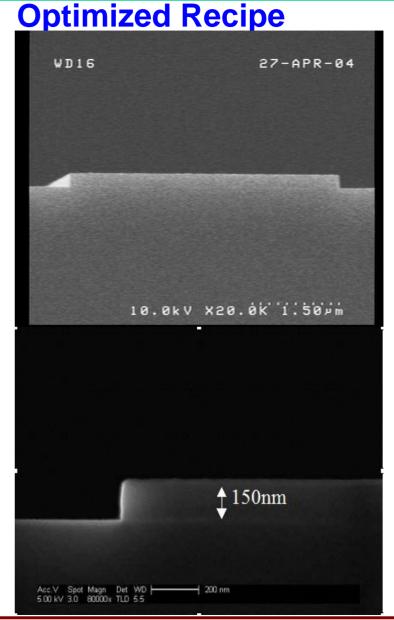
Poly-Si Etch-III: AMAT P5000

Recipe	BT	ME	OE
Etch time (sec)	10	EndPoint	
CF4 (sccm)	35	0	0
HBr (sccm)	0	20	30
Cl2 (sccm)	0	20	15
HE-O2 (sccm)	0	0	17
RF Power (W)	250	200	90
Pressure (mT)	100	100	100
M-Field (G)	0	40	50

Etch Rate	BT	ME	OE
Poly Etch Rate (A/min)	1300	2800	1400
Oxide Etch Rate (A/min)	1000	250	<10
Selectivity (Poly : Oxide)	1.3:1	11:1	140:1

> Problems

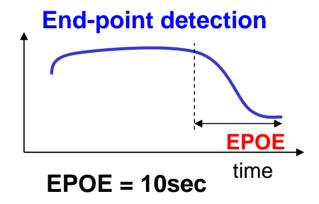
- tapering
- -High HBR causes more angle


Solutions

- Increase CL2 (22) & decrease HBR (18)
- Decreases deposition & reduces taper

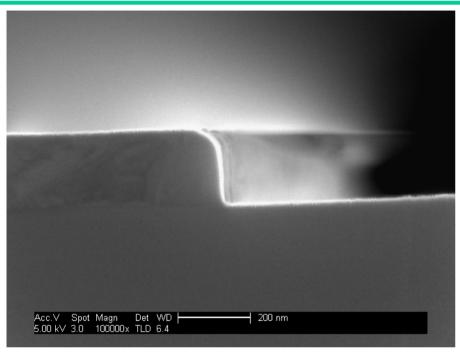
Poly-Si Etch-IV: Increase Cl2 to HBr Ratio

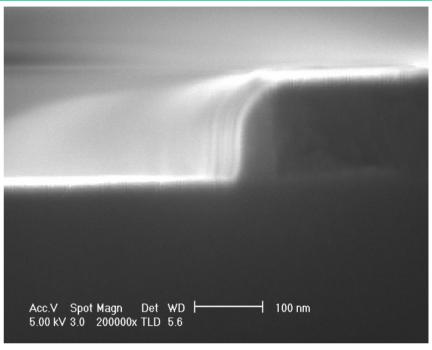
Recipe	BT	ME	OE
Etch time (sec)	10	EndPoint	25-35
CF4 (sccm)	35	0	0
HBr (sccm)	0	18	30
Cl2 (sccm)	0	22	15
HE-O2 (sccm)	0	0	17
RF Power (W)	250	200	90
Pressure (mT)	100	100	100
M-Field (G)	0	40	50


Etch Rate	BT	ME	OE
Poly Etch	1300	2900	1400
Rate (A/min)			
Oxide Etch	1000	240	<10
Rate (A/min)			
Selectivity	1.3:1	12:1	140 : 1
(Poly : Oxide)			

Nitride Spacer Etch: AMAT P5000

Recipe	ME	
Etch time (sec)	Manually stop by EndPoint	
	-	
CF4 (sccm)	10	
CHF3 (sccm)	15	
Ar (sccm)	60	
O2 (sccm)	8	
RF Power (W)	50	
Pressure (mT)	30	
M-Field (G)	0	

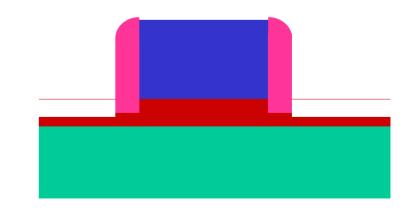

Etch Rate	ME
Nitride Etch Rate (A/min)	300
Oxide Etch Rate (A/min)	130
Selectivity (Nitride : Oxide)	2.3:1



Only 10sec over etch(EPOE) to protect the oxide layer

- It was OK due to the very uniform nitride film

Nitride Spacer Etch



300nm Poly, 60nm Nitride: 6:1

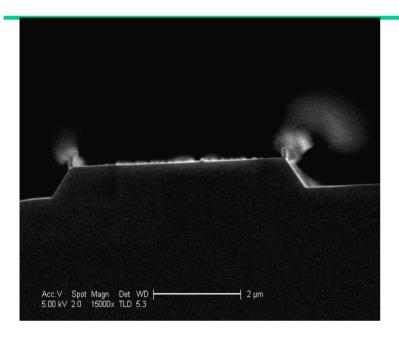
✓ Spacer Anisotropically etched

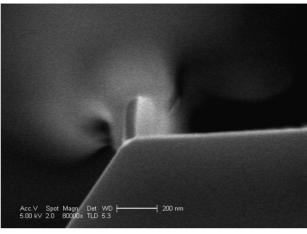
✓ Next step--- TMAH etch to remove poly-Si block

150nm Poly, 60nm Nitride: 3:1

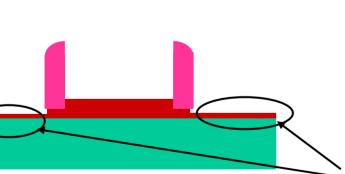
TMAH Etch-I

Characterized on Dummy and settled on the following conditions


- Temperature : 90 degree (Highly sensitive to temperature)
- Ratio with water: 25% TMAH


Etch Rate	ME
Poly Etch Rate (A/min)	~8000
Nitride Etch Rate (A/min)	<2
Oxide Etch Rate (A/min)	<2
Selectivity (Poly : Oxide or Nitride)	Almost infinity

Question: Pre-TMAH HF dip and how long (Trade-off)?


- Need to remove native oxide
- Will take out already tenuous oxide film
 - →7sec 50:1 HF dip

SEMs after TMAH Etch-II

5:1 aspect ratio spacer -Width: 52nm

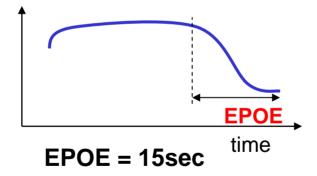
Acc: V Spot Magn Det WD | 500 nm 5.00 kV 3.0 48192× TLD 6.4

10:1 aspect ratio spacer -Width: 47nm

Problem

No oxide during TMAH etch

- There is **no oxide remaining**, hence etches single crystal Si at a facet
- Except for that good spacers

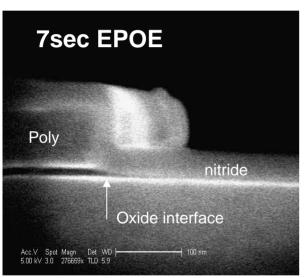

Resolve the No-Oxide Problem

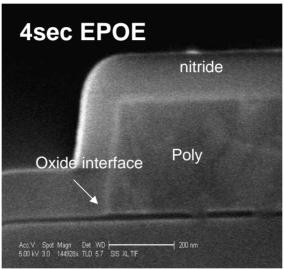
>Steps which remove oxide (initial 150A)

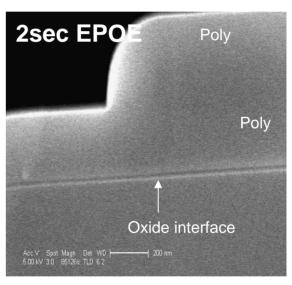
- Poly-Si overetch ->15s EPOE and ~30s OE → ~70A
- Post Poly-Si cleaning ->10s 50:1 HF→ 9A
- Nitride overetch-> 15s EPOE→32A
- HF dip to remove native oxide before TMAH-7s 50:1→ 7A

> Poly-Si over-etch(EPOE) biggest culprit

End-point detection During Main Etch


≻Solution


- Increase initial oxide thickness to 200A
- Reduce EPOE in poly-Si etch for since have an overetch step


Inspection of the No-Oxide Problem

But Still had same problem: There is no oxide remaining

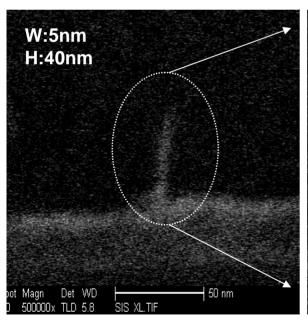
→ Need to check oxide thickness by SEM after the Poly-Si etch step

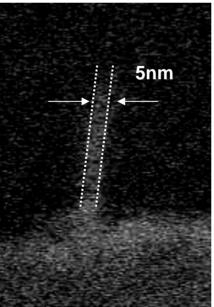
Most oxide was gone during the Poly-Si main etch, >7 times faster oxide etch!!

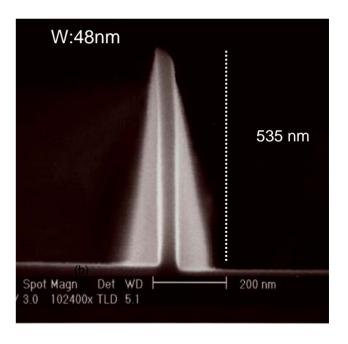
16

Possible reasons: Interface stress on oxide

→ weaker than thick oxide


Solution: Reducing EPOE time below 2 sec!!


Run 3


- > Poly etch by 2sec EPOE, 25sec OE
- >TMAH with 200% OE (no HF-dip before TMAH)

Very uniform and robust spacers

→ can make below 5nm width spacer
with very high aspect ratio

Various Approaches For Si Fin Etch

- Approach I: HBr/Cl2 with normal BT with CHF3
- Approach II: NF3 with normal BT with CHF3
- Approach III: Added O2 in the HBr/Cl2 approach

1)with normal BT with CHF3

2)with new BT

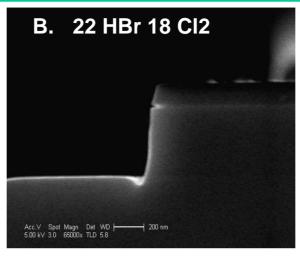
*All Si Fin etches are done by AMAT P5000

Si Fin Etch – Ist Approach

> Two types of wafers

- Calibration wafers: 2100A thick nitride hard mask and 200A thick oxide
- Spacer mask wafers
- > Start with poly etch recipe and play with HBr, Cl2 and power


Recipe-1	ВТ	ME
Etch time (sec)	10	60
CF4 (sccm)	35	0
HBr (sccm)	0	12 ~ 28
Cl2 (sccm)	0	28 ~12
HE-O2 (sccm)	0	0
RF Power (W)	250	*170 ~ 225
Pressure (mT)	100	100
M-Field (G)	0	40


Etch Rate	BT	ME
SI Etch Rate (A/min)	1300	3000
		~ 5000**
Nitride Etch Rate	1500	800
(A/Min)		~ 1000
Oxide Etch Rate	1000	240
(A/min)		

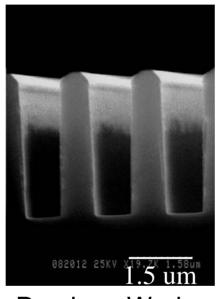
^{**} Higher Cl2 made higher etch rate

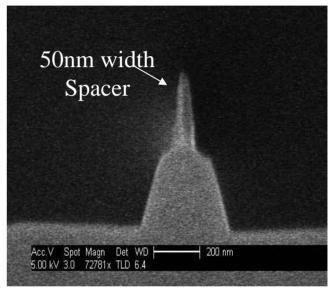
^{*} Changing power didn't make a big difference

Si Fin Etch – with Calibration wafers

- > Started with similar recepie as poly-Si etch
- > Observed Microtrenching
 - Ion Reflection (Profile bowing)
 - Some ion reflection is desirable: gives square corners

> Solution

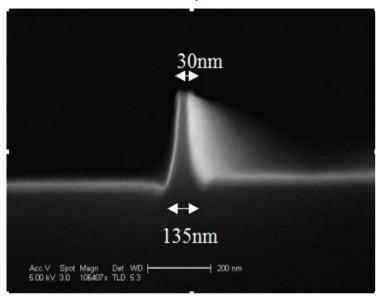

- Higher HBr to Cl2 (Bromine ions broader angular distr. than Cl2 ions)
- Optimize with power: to change angular distr.
- Mask profile


Si Etch – NF3 (2nd Approach)

- NF3 for ME for better Si etch profile
- Rationale: very good in the past

Recipe	ME
Etch time (sec)	30
CHF3 (sccm)	0
CF4 (sccm)	0
HBr (sccm)	45
NF3 (sccm)	13
Ar (sccm)	0
HE-O2 (sccm)	11
RF Power (W)	300
Pressure (mT)	100
M-Field (G)	65

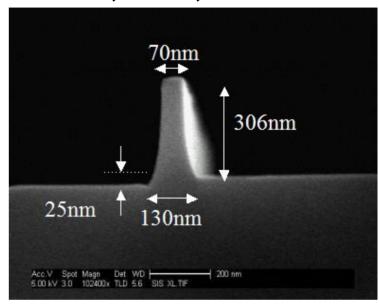
Previous Work



Etch with the spacer mask for 30sec ME

Using NF3 is not good for nano-scale Discarded!!

Vertical Structure: Si Fin-Etch

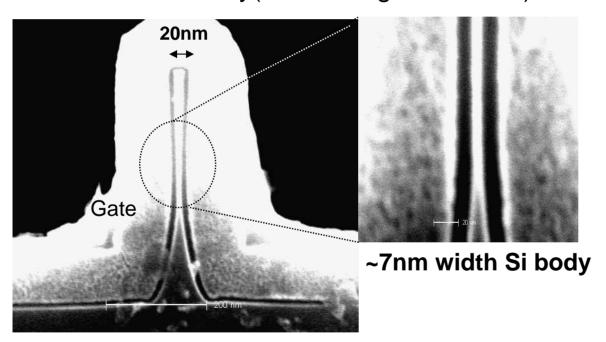

• HBr 24sccm, Cl2 16sccm

Reduce the micro trench with adding O2

More deposition during the etch

• HBr 24, Cl2 16, O2 8sccm

A new breakthrough Step (high selective oxide etch) before Si etch



New BT reduces the difference in fin height

Conclusion & Acknowledgement

Vertical MOS Device done with thinner spacer mask(~25nm)

- Side oxide thickness=10nm
- Bottom corner oxide thickness=8nm
- Transistor suitability(Source region_bottom)

Acknowledgement

Jim McVittie, Cesar Baxter, Elmer Enriquez and other SNF staffs