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Motivation: Low-κ
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Motivation: Integration Challenge
Photoresist ash plasmas have been shown to both

A) Etch or remove the exposed dielectric

B) Leave a “skin” or modified layer
• Deficient in carbon content – “oxide-like”
• Increased κ performance issues associated with device speed
• More hydrophilic reliability issues associated with crack 

propagation in water, and possibly adhesion

SEM Image of Damage

Courtesy of Stephen M. Gates
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Background: Experimental Setup

30nm TaN

Si

30nm TaN

450nm 
Resist

460nm ultra 
low-κ ILD

Non-traditional ARXPSAsh-induced 
modification

Schematic after Resist Removal

Schematic of Test Structure

300nm

250nm

47°

Goal: Gain fundamental understanding of how 
the following factors in ashing plasmas affect 
ultra low-κ ILD (κ < 2.0) materials:

Radical Species Density
Ion Impact

Setup:
Plasma Characterization

• Radical density in dual frequency capacitive 
(DFC) discharge by OE actinometry

• Modeling of ion mean free path (λi) and sheath 
thickness (sm) to estimate ion scattering 

• Modeling of relative ion density to estimate ion 
current as a function of pressure

Test Structure: 450nm PR/30nm TaN/460nm 
ILD/30nm TaN/ Si substrate

Material Analysis
• Ash samples under various conditions
• Analyze sidewalls (θ>47°) and trench bottom 

(θ=0°) by non-traditional ARXPS
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Experimental Setup: Ion Scattering Model Details

Use pressure (p) to control mean free path of Ar+ ions (λAr+),

Use pressure and bias power to control plasma sheath thickness, sm

where 
V is the sheath voltage λDe is the Debye length 
λi is the mean free path for ions, ns is the ion density at sheath edge

Te is the electron temperature.

Compare: λi << sm (scattering), λi >> sm (no scattering)
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Experimental Setup: Actinometry Details
Use light emitted from excited state species to determine species concentration.  For 
the electron (e-) impact excitation on species A,

where 
A = species of interest I = light intensity 
α = spectrometer sensitivity ne = electron density 
nA = species density σ = excitation cross section 
ν = velocity fe = electron energy distribution function
β = branching fraction

To determine absolute density must normalize with an actinometer, X, with similar 
excitation threshold, νth

where bY/X is the ratio of the excitation rate of species (A or A2) over the actinometer (X).

Use fractional flow Ar and chamber pressure to vary radical density

∫
∞

=
thv

eAeA dvvfvvnnAI )()()(4),( 3σβλπαλ

AeAeA λ→+→+ −− *

X

AXAAXA

X

A

n
nbnb

XI
AI ,, 22

),(
),( +

=
λ
λ Density desired

Reactive Radical Species Densities Measured

AeAAeA λ→++→+ −− *
2



M. Worsley et al8 M.A. Worsley et alNCCAVS PEUG Meeting May 11th, 2006

Experimental Setup: Ion Density Model
Ion Current ~ niui

Relative ion density, ni,  modeled
Ar+, A2

+ (A = O or N) – minimal 
dissociation

Ionization cross sections from 
literature

EEPF’s from previous study

Relative ion velocity, ui,  estimated 
via Vs

Bias power (Vapplied)
Pressure (Vp ~ 5Te)
Expect Te (and therefore ion velocity) 

to decrease with pressure
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Ion current increases with increasing 
pressure for O2 plasma

Ion current decreases with increasing 
pressure for N2 plasma
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Ion Scattering Model

λi=0.15 cm at 20 mTorr
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For 20 mTorr plasma

0 W 100 W

λi < sm

200 W

λi > sm

Minimal 
scattering

Significant 
scatteringλi ~ sm

λi < 0.5sm

λi=0.30 cm at 10 mTorr

λi=0.03 cm at 100 mTorr

sm at 10 mTorr

sm at 20 mTorr
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Radicals: OE Actinometry – Pressure & Percent Ar
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Pressure
Radical species density increases with chamber pressure for all species
Dissociation behavior of H2 plasma is unique – EEPF and dissociation cross section function

Percent Ar
Radical species density decreases with increasing %Ar for H2 and N2 plasma
Radical species density and dissociation increase with %Ar for O2 plasma – Penning dissociation

5-60 mTorr allows significant increase in radical species density
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ARXPS Analysis (Ar/O2) - Bias Power
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Damage characterized by increase in 
O content relative to Si

(O/Si)SW:(O/Si)TB ratio is
•1 for equal damage
•<1 for lesser damage to SW
•>1 for greater damage to SW

Effect of ions on sidewall damage in 
O2 discharge

0W: less damage to SW 
•No ion scattering
•Most damage at trench bottom

100W: increased damage to SW
•Significant ion scattering
•Leads to increased SW damage

200W: increased damage to SW
•Significant ion scattering
•Leads to increased SW damage

No 
scattering

Significant 
scattering

Ion impact increases with bias power (30mTorr)
Radical species density is constant

Ion impact causes significant SW damage at 
30mT

Sidewall (SW)

Trench Bottom (TB)

Test Structure after Ash
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ARXPS Analysis (Ar/O2) - Pressure
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Damage characterized by increase in 
O content relative to Si

(O/Si)ILD ~  1.3
(O/Si)ILD > 1.3 → damage

Effect of ions and radicals on sidewall 
damage in O2 discharge

10mTorr: little damage to SW 
•No ion scattering
•Low O density

30mTorr: damage to SW depends on 
bias

•No ion scattering at 0W→little 
damage
•Significant ion scattering at 200W→
significant damage

60mTorr: increased damage to SW
•Significant ion scattering
•High O density

Ion impact increases with pressure 
Radical species density increases with pressure

Effect of ion scattering is significant

Sidewall (SW)

Trench Bottom (TB)

Test Structure after Ash

No or 
minimal 

scattering

Scattering
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ARXPS Analysis (Ar/N2) – Bias Power
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 C:Si

Damage characterized by increase 
in N content and decrease in C 
content relative to Si

(N/Si)ILD = 0
(N/Si)ILD > 0 → damage
(C/Si)ILD = 0.5
(C/Si)ILD < 0.5 → damage

Effect of ions on damage in N2
discharge

Similar damage to SW and TB 
(scattering regime)

Damage increases with bias power
•N:Si increases with power
•C:Si ratio decreases with power 

Damage trend follows trend in ion 
impact

Ion impact increases with bias power (scattering regime)
N species density is constant

Increased ion impact leads to more damage

Sidewall (SW)

Trench Bottom (TB)

Test Structure after Ash
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ARXPS Analysis (Ar/N2) – Pressure
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Damage characterized by increase 
in N content and decrease in C 
content relative to Si

(N/Si)ILD = 0
(N/Si)ILD > 0 → damage
(C/Si)ILD = 0.5
(C/Si)ILD < 0.5 → damage

Effect of ions and radical density on 
damage in N2 discharge

Damage decreases with pressure
•N:Si decreases with pressure
•C:Si ratio increases with pressure 

Damage trend does not follow radical 
density

Damage trend does follow trend in 
ion bombardment

Ion impact decreases with pressure (scattering regime)
N species density increases with pressure

Reduced ion impact leads to less damage

Sidewall (SW)

Trench Bottom (TB)

Test Structure after Ash

Radical density increases

Ion impact decreases
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Summary and Conclusions
Identified ion impact as key factor that has significant impact on ash-
induced damage

Oxygen ash plasma

Nitrogen ash plasma

Conclusions for minimal damage
Optimal ash process may be in a reactor that eliminates ion impact

If ion impact cannot be eliminated, operate in a regime that minimizes ion 
impact
• Low pressures
• Low bias power

These conclusions focus on minimizing low-κ ILD damage, photoresist
removal rate must also be considered in optimizing ash process


