

Effect of Species Density and Ion Scattering During Ashing on Ultra Low-κ Inter-Level-Dielectric (ILD) Materials

M.A. Worsley¹, S.F. Bent¹, N.C.M. Fuller², T.L. Tai³, J. Doyle², M. <u>Rothwell², T.J. Dalton²</u>

¹Stanford University, Stanford, CA 94305 ²IBM Research Division, Yorktown Heights, NY 10598 ³IBM Microelectronics Division, Hopewell Junction, NY 12533

<u>Acknowledgements</u>: Ron Goldblatt, Jeff Hedrick, Dolores Miller, Mark Robson, Erik Geiss, Ray Sicina, John Boyle, Glen Laliberte, Shobha Hosadurga, MRL Research Lab. <u>Funding</u>: IBM PhD Fellowship, NSF Fellowship

Outline

Motivation

- Low-κ
- Integration challenges

Background

- Experimental Setup
- Analytical Techniques

□ Key Results: Radicals and Ion Impact

- Oxygen ash plasma
- Nitrogen ash plasma

Summary and Conclusions

Motivation: Low-κ

□ Limitation is in interconnects – the wiring structure connecting transistors

- Increased number of layers (circuit length) Increased resistance (R)
- Shrinking distance between lines Increased capacitance (C)

3 NCCAVS PEUG Meeting May 11th, 2006

Motivation: Integration Challenge

STANFORD C H E M I C A L

Photoresist ash plasmas have been shown to both

- A) Etch or remove the exposed dielectric
- B) Leave a "skin" or modified layer
 - Deficient in carbon content "oxide-like"
 - Increased $\kappa \longrightarrow$ performance issues associated with device speed
 - More hydrophilic reliability issues associated with crack propagation in water, and possibly adhesion

SEM Image of Damage

Courtesy of Stephen M. Gates

Background: Experimental Setup

□ Goal: Gain fundamental understanding of how the following factors in ashing plasmas affect ultra low- κ ILD (κ < 2.0) materials:

- Radical Species Density
- Ion Impact

□ Setup:

- Plasma Characterization
 - Radical density in dual frequency capacitive (DFC) discharge by OE actinometry
 - Modeling of ion mean free path (λ_i) and sheath thickness (s_m) to estimate ion scattering
 - Modeling of relative ion density to estimate ion current as a function of pressure
- Test Structure: 450nm PR/30nm TaN/460nm ILD/30nm TaN/ Si substrate
- Material Analysis
 - Ash samples under various conditions
 - Analyze sidewalls (θ>47°) and trench bottom (θ=0°) by non-traditional ARXPS

Schematic of Test Structure 450nm Resist 300nm 30nm TaN 250nm 460nm ultra low-κ ILD 30nm TaN Si Schematic after Resist Removal Non-traditional ARXPS Ash-induced modification 47°

□ Use pressure (p) to control mean free path of Ar⁺ ions (λ_{Ar+}),

$$\lambda_{Ar^+} = \frac{1}{n_g \sigma_{Ar^+}} \approx \frac{1}{330p} (cm)$$

Use pressure and bias power to control plasma sheath thickness, s_m

$$s_m = \left[\frac{\sqrt{2}(1.68)\varepsilon_0 V^{\frac{3}{2}}\sqrt{\lambda_i}\left(1+\frac{\pi\lambda_{De}}{2\lambda_i}\right)^{\frac{1}{2}}}{en_s\sqrt{T_e}}\right]^{\frac{1}{2}}$$

where

Compare: $\lambda_i \ll s_m$ (scattering), $\lambda_i \gg s_m$ (no scattering)

Significance of Ion Scattering Determined

Experimental Setup: Actinometry Details

Use light emitted from excited state species to determine species concentration. For the electron (e) impact excitation on species A,

$$A + e^{-} \rightarrow A^{*} + e^{-} \rightarrow \lambda_{A}$$

$$A_{2} + e^{-} \rightarrow A + A^{*} + e^{-} \rightarrow \lambda_{A}$$

$$I(A, \lambda_{A}) = 4\pi\alpha(\lambda)\beta n_{e}n_{A}\int\sigma(v)v^{3}f_{e}(v)dv$$

where

A = species of interest V_{th} α = spectrometer sensitivityI = light intensity n_A = species density n_e = electron densityv = velocity σ = excitation cross section β = branching fraction f_e = electron energy distribution function

To determine absolute density must normalize with an actinometer, X, with similar excitation threshold, v_{th}

$$\frac{I(A, \lambda_A)}{I(X, \lambda_X)} = \frac{b_{A_2, X} n_{A_2} + b_{A, X} n_A}{n_X} \longrightarrow \text{Density desired}$$

where $b_{Y/X}$ is the ratio of the excitation rate of species (A or A_2) over the actinometer (X).

Use fractional flow Ar and chamber pressure to vary radical density

Reactive Radical Species Densities Measured

Experimental Setup: Ion Density Model

Ion Current ~ n_iu_i

Ion current <u>increases</u> with increasing pressure for O₂ plasma

Ion current <u>decreases</u> with increasing pressure for N₂ plasma

Radicals: OE Actinometry – Pressure & Percent Ar

Pressure

Radical species density increases with chamber pressure for all species

Dissociation behavior of H₂ plasma is unique – EEPF and dissociation cross section function

Percent Ar

Radical species density decreases with increasing %Ar for H₂ and N₂ plasma

Radical species density and dissociation <u>increase</u> with %Ar for O₂ plasma – Penning dissociation

5-60 mTorr allows significant increase in radical species density

ARXPS Analysis (Ar/O₂) - Bias Power

Radical species density is constant

Damage characterized by increase in

Ion impact causes significant SW damage at 30mT

Bias Power, W

O content relative to Si ■(O/Si)_{SW}:(O/Si)_{TB} ratio is I for equal damage 1.2 •<1 for lesser damage to SW</p> •>1 for greater damage to SW 1.0 Effect of ions on sidewall damage in ^e ^{0.8} O₂ discharge •0W: less damage to SW •No ion scattering •.4 No ion scattering 0.4 Most damage at trench bottom 0.2 100W: increased damage to SW Significant ion scattering 0.0 Leads to increased SW damage 200W: increased damage to SW

- Significant ion scattering
- Leads to increased SW damage

ARXPS Analysis (Ar/O₂) - Pressure

ARXPS Analysis (Ar/N₂) – Bias Power

ARXPS Analysis (Ar/N₂) – Pressure

Identified ion impact as key factor that has significant impact on ashinduced damage

- Oxygen ash plasma
- Nitrogen ash plasma

Conclusions for minimal damage

- Optimal ash process may be in a reactor that eliminates ion impact
- If ion impact cannot be eliminated, operate in a regime that minimizes ion impact
 - Low pressures
 - Low bias power

These conclusions focus on minimizing low-κ ILD damage, photoresist removal rate must also be considered in optimizing ash process

