Etch Product Business Group

Minimizing Plasma-Induced Charging Damage during Multi-Step Etching of Dual-Damascene Trench and Via Structures with Process Optimization

M. Kutney, S. Ma, D. Buchberger, A. Zhao, G. Delgadino, D. Hoffman, and K. Horioka* Etch Product Business Group, Dielectric Etch Div. *Applied Materials, Inc., Japan

Introduction and Objectives

- Plasma-induced charging effects are
 - Influenced by plasma stability and uniformity
 - Strong functions of chamber design and process conditions
- The role of plasma stability can be examined using multiple charging-sensitive electrical test structures
 - EEPROM-based sensors
 - Metal-gate and poly-gate antenna structures
- Identify the risk factors that contribute to charging effects in a very-high-frequency capacitively coupled (VHF CCP) dielectric etcher
- Factors related to plasma uniformity and stability were studied in the VHF CCP Centura[®] Enabler[®] dielectric-etch chamber
 - Designed for all-in-one processing of sub-65 nm dualdamascene structures

Plasma Charging Damage – Responsible Groups

- Four different groups influence the plasma-charging-damage risk
- Understanding all of the group details is challenging

Available Plasma-Damage Characterization Tools

- Device Characterization
 - 200 mm CHARM[®]-2 wafers: reprogrammable EEPROM wafer
 - Measures threshold-voltage shifts following plasma exposure on various antenna EEPROM structures
 - Local peak voltages and currents are then determined
 - 200 & 300 mm MOS antenna capacitor & transistor wafers
 - Widely accepted in industry for plasma-damage characterization
 - Difficult and expensive for equipment vendors to acquire, especially 300 mm!!
- Surface-Charge Characterization
 - 200 & 300 mm Contact Potential Difference (CPD)
 - Measures residue charge before and after plasma exposure on blanket 1kÅ thermal oxide wafers
 - Incompatible for oxide-etching chemistries
- Chamber Characterization
 - Langmuir probe: measures plasma density
 - Plasma density does not necessarily correlate to real plasma damage
 - Cannot be used for every process condition
 - V_{DC} cathode: special cathode for V_{DC} uniformity measurement
 - Measure Vdc at different location and use ΔV_{DC} to relate to damage

300 mm Enabler[®] Dielectric Etch Chamber Overview

- Very high frequency source (>100MHz) allows very low DC bias etching and ashing capabilities
- Controllable plasma density and neutral dissociation for different etching applications
- Two additional knobs CSTU (magnetic field) and NSTU (gas distribution) to tune etch rate and CD uniformities
- Very wide, easily tunable and usable operating windows
- Ion Energy Distribution control with dual bias RF

 As the CSTU value exceeds the optimum setpoint for a process, the plasma and the etch rate become non-uniform

As the CSTU value exceeds the optimum setpoint for a process, the risk of plasma-induced charging damage grows

Logic customer's polygate MOS capacitor voltage-breakdown yield

Ref: www.charm-2.com

As the CSTU value exceeds the optimum setpoint for a process, the risk of plasma-induced charging damage grows

Simplified Antenna MOS Capacitor Structure: SPIDER (SPIDER Systems, Inc)

- Bare metal-gate antenna MOS capacitor structure for plasmacharging-damage evaluation (Ref: IEEE TED, 45(3), p.722, 1998)
- Short-flow plasma charging damage test: gate leakage current
 - Two terminals: plasma-exposed AI pad & Si substrate backside
 - Metal gate is directly on top of gate oxide and has various areas
 - Sensitive to plasma charging damage to every part of the process
 - Measure leakage before & immediately after plasma exposure
 - Cannot detect electron-shading effect

 As the CSTU value exceeds the optimum setpoint for a process, the risk of plasma-induced charging damage grows

Process Risk #2 – Unstable Plasma during Transitions

- Often, many process parameters are changed between steps
 - For example, bias & source powers, pressure, CSTU, & chemistry
 - Linearly ramped to new set points or without any control
 - Simultaneously changed at the beginning of each step with varying rates
- Unoptimized transitions increase the plasma-damage risk
 - Plasma is unstable as it undergoes significant distribution, density, and energy changes
- Plasma changes can be represented by plasma conductance
 - Characterizes the energy allowed to flow through the plasma

Process Risk #2 – Unstable Plasma during Transitions

- Unoptimized transitions have
 - Significant plasma conductance changes during transitions to and from the steady-state step-2 etching condition
 - Plasma conductance before and after step 2 also deviate
- Optimized transitions have
 - <u>Significantly less</u> plasma conductance change
 - Plasma conductance before and after step 2 <u>deviate less than the</u> <u>steady-state step-2 value</u>

MOS Gate-Leakage Yields for Unoptimized & Optimized Low- κ Single-Step Etching

- 300 mm MOS metal-gateleakage currents verify risk:
- Unoptimized does not pass
- Optimized does pass
- Logic customer's MOS polygate-breakdown-voltage yield also validate:
- Unoptimized: 88% & 37%
- Optimized: 100% & 100%
 1k:1 100k:1

Etch Product Business Group

Plasma-Induced Charging-Damage Results for Singleand Multi-Step Processes before and after Optimization

Data that meet the threshold specifications and customer criteria are bolded, while data that do not meet are not

Measurement:	300 mm metal-gate MOS cap. leakage- current yield		200 mm EEPROM-based voltage and current sensors			200 & 300 mm poly-gate MOS cap. voltage- breakdown yield	
	200: 1	100k:1	+ Vmean & + V95%	− <i>V</i> mean & − <i>V</i> 95%	+ 1 max & - 1 min	1k:1	100k:1
Passing specification:	≥95% @1 nA (σ±5%)		Vmear V95%	o < 5 V & < 10 V	/ < 1 mA/cm²	100%	100%
Pre-measure control	100%	100%	~2 & ~2	~-2 &-2	+0.0 & -0.0	100%	100%
Unoptimized single step	79.1%	32.1%	6 & 10	-2 & -6	+2.0 & -0.9	88%	37%
Optimized single step	97.1%	99 .5%	3& 5	-2 & -4	+0.6 & -0.3	100%	100%
Unoptimized multiple step	N/A	N/A	10 & 14	-6 & -10	+11.0 & -2.0	N/A	N/A
Optimized multiple step	N/A	N/A	4 & 5	-2 & -5	+0.9 & -0.2	100%	100%

 By optimizing the process, the plasma-damage risk is significantly reduced

Conclusions

- Two risk factors that contribute to plasma-inducedcharging sensitivity in a VHF CCP have been identified
 - Excessive magnetic fields generate a larger charge distribution that is conducive to charging damage
 - Can be easily avoided with simple process ground rules
 - Plasma instability can occur during transitions from one plasma state to another
 - By continuously controlling and stabilizing the plasma during a transition, charging effects can be reduced
- Continuous damage-free etch processes can now be developed
 - Etching and ashing of complex multi-layer stacks
 - For example, all-in-one via and trench etching

