Unraveling the Complex Processes in a Fluorocarbon Plasma

Matthew Goeckner

University of Texas at Dallas

This program was funded by a grant from NSF/DOE, contract number CTS-0078669

OUTLINE

- Plasma Chemistry in a nut shell
- Approaches to solving this complex problem
- Our approach mGEC
- Results
- Implications
- Acknowledgements

Plasma Science and Applications Laboratories

Plasma Chemistry in a nutshell

Plasma Science and Applications Laboratories

TYPICAL INTERACTIONS IN A PLASMA SYSTEM

• PLASMA PHYSICS SUBSYSTEM

- Gas collision processes
- Surface collision processes

• GAS PHASE CHEMISTRY SUBSYSTEM

- Feed gas
- Collisions with plasma (electrons)
- Collisions with other gases
- Collisions with surfaces

• SURFACE CHEMISTRY/PHYSICS SUBSYSTEM

- Surface reactions
- Liberation of gas-phase chemicals

Plasma Science and Applications Laboratories

So how does one solve this complex problem?

Plasma Science and Applications Laboratories

Studies of Interactions in a Plasma

M.J. Kushner, et al., J. Appl. Phys. 80, 1337 (1996).

Plasma Science and Applications Laboratories

Experimental work from Fisher, et al.

- Imaging Radicals Interacting with Surfaces (IRIS) system
 - Radicals produced in remote plasma
 - Passed as molecular beam to sample chamber
 - Material sample moved into and out of beam
 - Use Laser induced Fluorescence used to compare
 - P.R. McCurdy, (Fisher), *et al.*, RSI 68 1684 (1997)
- Example results from CF₂ on SiO₂
 - 300 K surface
 - From C_2F_6 Plasma
 - LIF signal for the CF₂ (0,11,0) state
 a) without surface, b) with, c)
 difference
 - C.I. Butoi, (Fisher), et al., JVSTA 18 2685 (2000)

Plasma Science and Applications Laboratories

ase

Matthew J. Goeckner

(c)

Experimental work from Fisher, et al.

- Fisher finds that scattering depends on material
 - E.R. Fisher, Plasma Process. Polym 1, 13 (2004)

This result is important to our

•

conclusions

% Crosslinking

Molecular Dynamics models by Graves, et al.

- Molecular Dynamics follows the movement of 1000's of particles
 - Interaction with incoming particles
 - Include as many chemical and physical processes as possible
- Example
 - a-Si bombarded by 2 monolayers (ML) of 200 eV Ar⁺
 - Shows initial and final positions of initial surface (top) and initial bulk (bottom) atoms
 - D.B. Graves and D. Humbird , Appl. Surf. Sci. **192**, 72 (2002)

UT D

Plasma Science and Applications Laboratories

Molecular Dynamics models by Graves, et al.

Depth (Å)- Species density (arb) Chemistry is found to play a role in this process Example results Elemental profiles and structure depend on incoming flux - CF₂ F Increasing and Ar⁺ (a) F/CF₂ » a = 9, 0, 1 flux ratio » b = 8, 1, 1 » c = 7, 2, 1 Si D. Humbird and D.B. Graves, JAP 96, 65 (2004) The shift in species density • seen here is important to our conclusions (C) **Plasma Science and Applications Laboratories** Matthew J. Goeckner

Plasma models by Kushner, et al.

- Full model of complete system
 - Use a hybrid (fluid and Monte Carlo) to predict
 - » plasma (ions and electrons)
 - » Neutrals (all radicals)
 - Requires 'knowing' all reaction rates
 - This is the well known "Hybrid Plasma Equipment Model" - HPEM
 - MJ Kushner, JAP **53**, 2923 (1982)

$$e + CF_{4} \xrightarrow{F,F_{2}} CF_{3}^{+} CF_{3}^{-} CF_{2}^{+} CF^{+} F_{1}^{+} F_{1}^{-} e^{-} e^{-} F_{1}^{+} F_{1}^{+} F_{1}^{-} e^{-} e^{-} F_{1}^{-} e^{-} F_{1}^{-} F_{1}^{-} F_{2}^{-} F_{1}^{-} F_{1}^{-} F_{1}^{-} F_{2}^{-} F_{1}^{-} F_{1}^{-} F_{2}^{-} F_{1}^{-} F_{1}^{-} F_{2}^{-} F_{1}^{-} F_{1}^{-} F_{1}^{-} F_{2}^{-} F_{1}^{-} F_$$

Plasma Science and Applications Laboratories

Plasma models by Kushner, et al.

- HPEM now used to routinely predict gas phase densities
 - 2-D and 3-D versions
 - Example:
 - » ICP reactor,
 - » Ar/c- $C_4F_8/O_2/CO$ feed gas
 - » Predicted $C_x F_y$ densities
 - » A.V. Vasenkov, Li, Oehrlein, Kushner, JVSTA 22, 511 (2004)
- To further improve HPEM need to understand surface process
 - "We acknowledge that the dispositions of surface reactions are critical to the development of a successful reaction mechanism for the low-pressure plasmas of interest."
 - » A.V. Vasenkov, Li, Oehrlein, Kushner, JVSTA 22, 511 (2004)

TYPICAL INTERACTIONS IN A PLASMA SYSTEM

• PLASMA PHYSICS SUBSYSTEM

- gas collision processes
- surface collision processes

• GAS PHASE CHEMISTRY SUBSYSTEM

- Feed gas
- Collisions with plasma (electrons)
- Collisions with other gases
- Collisions with surfaces

• SURFACE CHEMISTRY/PHYSICS SUBSYSTEM

- Surface reactions
- Liberation of gas-phase chemicals

Plasma Science and Applications Laboratories

DESIGN CRITERION: Plasma and Gas Source

- Set out to build a system in which "ALL" free parameters on surfaces can be systematically controlled
 - Multiple diameters
 - Multiple source to chuck gaps
 - Multiple surface materials (Al, Al_2O_3 , Si, etc)
 - Heated uniformly to 200 \pm 1 °C
- Use a well understood plasma source
 - Similar to GEC ICP reference cell source
- Use a simple Fluorocarbon gas
 - CF₄ (All data in talk)
 - C₄F₈ (Runs just starting)

Plasma Science and Applications Laboratories

Approach to study

- Use both experimental and modeling (HPEM) to understand complete system
 - With initial studies from standard GEC reactor (for comparison)
- mGEC studies
 - Modeling studies using HPEM include
 - » Examined sticking coefficients
 - » Chamber geometry
 - Experimental studies include
 - » Etch/deposition rates (via ellipsometer)
 - » Langmuir probe measurements (CF_4 , Ar O_2)
 - » Gas phase chemistry (FTIR, OES/acinominty)
 - » Surface chemistry (via XPS, ATR-FTIR, FTIR)
- Want to understand how processes on substrate are influenced by
 - Walls (surface phase chemistry)
 - Gas

Plasma Science and Applications Laboratories

Initial HPEM Study of sticking coefficient

- Full DOE
 - 2 chamber diameters
 - 2 source-chuck gaps
 - 2 sticking coefficients (each specie)
 - » 0% (no sticking)
 - » 1%
 - » Sticking coefficient (SC) is the percentage of radicals impacting a wall that sticks

Wall diameter (cm)	Gap (cm)
20.32	10.16
20.32	15.24
66.04	10.16
66.04	15.24

F	CF	CF2	CF3	
0%	0	0	0	
0%	0	0	1%	
0%	0	1%	0	
0%	0	1%	1%	
0%	1%	0	0	
0%	1%	0	1%	
0%	1%	1%	0	
0%	1%	1%	1%	
1%	0	0	0	
1%	0	0	1%	
1%	0	1%	0	
1%	0	1%	1%	
1%	1%	0	0	
1%	1% 0		1%	
1%	1% 1%		0	
1%	1%	1%	1%	

Initial HPEM Study of sticking coefficient

Approach to study

- Use both experimental and modeling to understand complete system
 - With initial studies from standard GEC reactor (for comparison)

• mGEC studies

- Modeling studies using HPEM include
 - » Examined sticking coefficients
 - » Chamber geometry
- Experimental studies include
 - » Etch/deposition rates (via ellipsometer)
 - » Langmuir probe measurements (CF_4 , Ar O_2)
 - » Gas phase chemistry (FTIR, OES/acinominty)
 - » Surface chemistry (via XPS, ATR-FTIR, FTIR)
- Want to understand how processes on substrate are influenced by
 - Walls (surface phase chemistry)
 - Gas

• Will start with standard results (etch rate) and compare to wall and gas results

• Increase in source height lowers deposition and etch rates as well as shifting the threshold

- Decreased Neutral Flux and/or Ion Density? Different etch yield?

• Significantly larger decrease in dep, etch and threshold with presence of wall

– Neutral flux limited by 20 cm wall? Ion density effected by gap?

Plasma Science and Applications Laboratories

- Wall diameter non-influential at 4 cm source height.
- Wall diameter is influential at 6 cm source height
 - Wall causes a decrease in etch rate maximum and CFx deposition rates
 - Greater fractional loss of neutrals to the wall at 6 cm source height?
 - GAP DOES matter why?

Influence of GAP

As a Function of Source Height

* Net power transmission decreased due to increased reflected power in matching network.

- Deposition occurs with decreasing Gap
 - Transition occurs at < 6 cm with wall; < 5 cm without wall
- Does the surface history matter?

Plasma Science and Applications Laboratories

Influence of GAP - History matters!

As a Function of Source Height

• Ion assisted deposition shows hysterisis

- Dependent on pre-existing CFx film / ion assisted deposited film
- Dependent on chemisorption sites?
- Do ion energy or flux matter?

Plasma Science and Applications Laboratories

Ion Density

- Ion Density increases by an order of magnitude as the gap is decreased
- Ion energy increases by $\approx 10 \text{ eV}$ with Gap
 - Ion assisted deposition is only explanation for increased deposition
 - Wall plays role How?

Plasma Science and Applications Laboratories

- Etch of substrate (Si or SiO₂) => deposition on walls
- Deposition on substrate => cleaning CF_x film from walls

Either etch or deposition can give handle on wall substrate interactions The link is likely via the gas-phase chemistry Will start with etch

Gas-phase chemistry studies

- Gas phase chemistry depends on a number of items
 - Si vs SiO₂ substrate
 - Etch vs deposition
 - Wall temperature
 - Wall diameter
 - Wall material
 - » Clean
 - » Seasoned
 - » Others?? (Measurements starting)

We will be examining these to understand the etch/deposition processes

Conditions for next few slides:

CF₄ - 10 SCCM, 5 mTorr, 400 W source, 70 W bias 5 cm gap, 20.3 cm Al wall

Plasma Science and Applications Laboratories

Gas-phase data vs wall conditions, etch rates

Same conditions

- wall temperature
- clean/seasoned
- Si etch is dependent on
 - wall temperature
 - clean/seasoned

NOTE: In both cases the etch surface temperature is constant!

- Decreased SiF₄ density ('confirms' Si etch data)
- ~ Constant COF_2 density ('confirms' SiO₂ etch data)

NOTE: Gas temperature likely below 'wall temperature' - Other surfaces at 'room' temperature

Plasma Science and Applications Laboratories

Gas-phase data vs wall conditions, CF₄ Same conditions

- In comparison the feed gas density decreases drastically
 - Density drops slightly more than ideal gas law

CF₄ breaks up a little more -or-CF₄ production on walls drops

- Breakup should be due to plasma
 - Plasma density and temperature approx independent of wall temperature
 Increased breakup should not be significant

If less CF_4 produced at the walls

Suggests increase in CF₂ and CF₃ production from the walls

OR

Suggests decrease in CF_2 and CF_3 loss to the walls

Gas-phase data vs wall conditions Same conditions

- The major radicals in a CF_4 plasma are, CF, CF_2, CF_3
- CF is not observed in any configuration • studied (=> $n_{CF} < 5 \times 10^{11} \text{ cm}^{-3}$)
- Under etch conditions:
- $n_{CF2} \text{ and } n_{CF3} \text{ are functions of wall}$ temperature and wall conditions $\text{ As } T_{wall} \text{ both } n_{CF2} \text{ and } n_{CF3} \text{ up to a point}$ Dirty walls are source of radical up to ~450 K $CF_x \text{ film provides more } CF_2, CF_3 \text{ to gas } 0$

```
Or
```

Less CF₂, CF₃ radicals lost to CF_x film Either way, we should be able to see by growing film on HOT substrates

Plasma Science and Applications Laboratories

Initial interpretation of Temperature Data

- At first blush
 - Looks like trends seen with H_2O
 - » Colder surfaces (0 °C) Adsorption
 - » Intermediate (~25 °C) Balance –
 - » Hotter surfaces (100 °C) -Desorption
- If this holds then
 - Simple heating will result in desorption
 - Simple experiment can test this
 - » Thick Film deposited
 - » Plasma turned off
 - » Feed Gas off
 - » Heat the film and watch

• Desorption curve is similar in shape as high temperature part **but not at fast**

Gas-phase data vs wall conditions, CF₄

• The simplest mathematical model is:

$$DR C Ae^{E_a/RT} Be^{E_d/RT}$$

• This gives rise to fitting of

Gap	A	В	С		Ēd
ст	nm/min	nm/min	nm/min	kJ.mot ⁻¹ eV	kJ.mol ⁻¹ eV
4	8 10 ⁻⁶	$5.65 \ 10^5$	95	-39.5 -0.41	33.6 0.35
5	1.75 10 ⁻⁶	9.5 10 ⁵	75	-42 -0.44	33.4 0.35
5.75	$4.95 \ 10^{-7}$	$4.2 \ 10^5$	41.5	-44.9-0.47	31.2 0.32
Vacuum		$1.73 \ 10^3$		N/A	33.4 0.35
CF ₄		$1.73 \ 10^3$		N/A	33.4 0.35

- E_a is an adsorption process and represents an adsorption energy These adsorption energies are the ~same! => energy physisorption Matches reported CF₂ adsorption energy - 39 kJ/mol => likely CF₂
 - o Cruden, Gleason and Sawin, Ultraviolet absorption measurement of CF2 in the parallel plate pyrolytic chemical vapour deposition process, J Phys. D 35 2002, 480
- E_d is an desorption process and represents an desorption energy These desorption energies are the ~same! => energy non chemical

Gas-phase data vs wall conditions, CF₄

• The simplest mathematical model is:

$$DR C Ae^{E_a/RT} Be^{E_d/RT}$$

• This gives rise to fitting of

Gap	A	В	C	Ea	L	Ed	l
ст	nm/min	nm/min	nm/min	kJ.mol ⁻¹	eV	kJ.mol ⁻¹	eV
4	8 10 ⁻⁶	5.65 10 ⁵	95	-39.5	-0.41	33.6	0.35
5	1.75 10 ⁻⁶	9.5 10 ⁵	75	-42	-0.44	33.4	0.35
5.75	4.95 10 ⁻⁷	4.2 10 ⁵	41.5	-44.9	-0.47	31.2	0.32
Vacuum		1.73 10 ³		N/A		33.4	0.35
CF ₄		1.73 10 ³		N/A		33.4	0.35

- The 'constants' A, B, C may be functions of other parameters e.g. A=A(n_F, n_{CF}, n_{CF2}, n_{CF3}, n_{CF}, ion)
- For example, the ion current (or flux _{ion}) ratio is 1 : 0.83 : 0.72 Lets compare this to A, B, C

Plasma Science and Applications Laboratories

Plasma Science and Applications Laboratories

• <u>Type of Fluorine content</u> in CF_x film seems to governed by source height

- Likely n_F / n_{CFx} increases with gap (We are trying to confirm this!)
- A and B might be functions n_{CFx} / n_F where CF_2 is probably the primary fluorocarbon

So what do we know?

• Deposition rate follows

 $DR C Ae^{E_a/RT} Be^{E_d/RT}$

• **C** ion
$$(C \sim 0.02$$
 ion)

- A B ? From E_a probably n_{CF2}
- If A B n_{CF2} Then why the drop with Gap?
 Other radicals?
 - » n_{CF} very low
 - » n_{CF2} , n_{CF3} and $n_{CF4} \sim constants$ with gap
 - » BUT XPS data indicates n_F and gap (Still checking)

Perhaps A B n_{CF2} / n_F

So what do we know?

• Assume that the deposited film is Teflon like (In reality it is probably very porous and highly cross linked!)

• The energy of the bonds are:

Bond	Energy		
	kJ.mol ⁻¹	eV	
С-С	370	3.8	
<i>C</i> - <i>F</i>	448	4.6	

Incident ions probably break these bonds at similar rates

If so, we can create a simple model of the growth.

Simple picture of ion assisted growth

- Direct ion adsorption
- Ion induced adsorption/desorption
 - Ion impact can break C–F or C–C bonds
 - Growth can happen if C-F bond broken
 - » CF_x fills broken bond
 - » CF_x molecules need to be readily available => physisorbed radicals more likely to bond

Matthew J. Goeckner

- » Would cause very porous, highly cross linked films
- Removal can happen if C–C bond broken
 - » Form gaseous species by F addition (e.g. CF_4)
 - » Light CF_x species can thermally desorb from the surface

Simple picture of ion induced growth

- This simple picture seems to explain a lot of the published results Examples:
 - Fisher's work shows that the CF₂ scattering coefficient depends on the C-C cross linking
 - Graves' work would suggest heavy cross linking (e.g. porous films) necessary for etch
 - Several authors CF₂ being produced at wall
 - ETC

Conclusions

- Deposition determined by
 - Chamber geometry
 - Surface temperature
 - Surface material

This is probably why results vary so much

• From experiments

$$DR \ 0.02 \ _{ion} \ A \ n_{CF_x} / n_F, \ _{ion} \ e^{E_a / RT} \ B \ n_{CF_x} / n_F, \ _{ion} \ e^{E_d / RT}$$

- Ions seem to cause deposition through two processes
 - Direct ion incorporation with $\sim 2\%$ sticking coefficient
 - Ion induced chemisorption and desorption
 - » Deposition two step Physisorb -> Chemical bond
 - » Desorption two step Bond destruction via ion impact -> thermal desorption

Matthew J. Goeckner

• Probably explains CF_x layer in etch

Conclusions

- Still need to confirm functionality of A and B
- Still need to confirm 'Sticking coefficient' of ions
 - Likely ion species/energy dependent
 - Still need to examine

DR Const ion
$$Ae^{E_a/RT} Be^{E_d/RT}$$

 0.02 ion An_{CF_x}/n_F , ion $e^{E_a/RT} Bn_{CF_x}/n_F$, ion $e^{E_d/RT}$

- Future studies will need to account for
 - Deposition Surface temperature
 - Etch surface temperature (?)
 - Ion flux
 - Ion energy (?)
 - ALL radical specie fluxes to surface
 - Surface type (?)
 - Chemistries (Working with C₄F₈ right now. Cl₂ chemistries to be added soon.)

Plasma Science and Applications Laboratories

ACKNOWLEDGEMENTS

- We wish to thank Prof. Kushner for helpful discussions and the use of his HPEM code.
- We thank Profs. Fisher, Graves, Kushner and Sawin for the use of their data in this talk
- Also thanks to: my colleague Prof. Lawrence Overzet

and our students Dr. Baosuo Zhou (Now at Micron) Dr. Eric Joseph (Now at IBM) Sanket Sant (PhD late spring 06)

- This program was funded by UTD and a grant from NSF/DOE, contract number CTS-0078669.
- Industrial donations have come from Varian Semiconductor, Novellus, Matheson Tri-Gas, and Texas Instruments.

Plasma Science and Applications Laboratories