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Plasma Chemistry in a nutshell
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/ TYPICAL INTERACTIONSIN A PLASMA SYSTEM \

« PLASMA PHYSICS SUBSYSTEM

— Gas collision processes
— Surface collision processes

 GASPHASE CHEMISTRY SUBSYSTEM
— Feed gas
— Caoallisions with plasma (el ectrons)
— Caoallisions with other gases
— Caollisions with surfaces

« SURFACE CHEMISTRY/PHY SICS SUBSY STEM

— Surface reactions

i — Liberation of gas-phase chemicals /
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So how does one solve this complex problem?
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Studies of Interactionsin a Plasma

: Silicon etching:
» Often experiments are setup to study on SENng
individual aspects of the process. XeF, g{;segﬁd Art
— Examplesinclude (but are not limited to): 70 gasonly Ar* beam beam only
. -— 60 +

» C_oburn.and Wl.nters o

» Fisher (interaction of plasma generated 20 |
radical beams with surfaces) 301

» Aydil (surface coverage and chemistry in 20 1
plasma processing tools) 10 |

» Oehrlein (polymerization and surface 0 = = = = =
chemistry in processing plasmas) 0 200 400 600 800 1000

» Lawler (gas phase densitiesin lighting time (s)
and other envi rgnments) ) Coburn and Winters, J. Appl. Phys. 50, (1979)

» Schoenbach (micro-hollow cathode light or In “Glow Discharge Processes’ by Chapman (Wiley,
sources) 1980) p317

» Graves (prepared radical and ion beam 14 N o
interactions with surfaces) = CF3™ (100=30x10 % em™)

« Models can control all aspect of the CL ST oSS T, sHOwERNERD
process. = =
— Examplesinclude (but are not limited to):

» Kushner (numerical simulations of,
plasma processes and chemistry)

» Graves (MD simulations)

» Economou (numerical simulations of - ( Oj
plasmaflow and chemistry) I

(1] = ! ]
0 4 8 12 16
Radius (cm) \ PUMP PORT
M.J. Kushner, et a., J. Appl. Phys. 80, 1337 (1996).
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Experimental work from Fisher, et al.

High Vacuum
Interaction Region

Bellows sealed

\‘ <5 x 10* Torr g
linear translator

* |maging Radicals Interacting
with Surfaces (IRIS) system ‘

— Radicals produced in remote plasma Consitce Mot
— Passed as molecular beam to sample \
chamber zgt;?nurzlowg"y l Mass Sty
— Material sample moved into and out Inerferomery
of beam i“"’z‘*ﬂb&“ o

— Use Laser induced Fluorescence used Galed_and
to compare oS
— P.R. McCurdy, (Fisher), et al., RSI
68 1684 (1997)

« Exampleresults from CF, on
SO,
— 300 K surface
— From C,F, Plasma

— LIF sugnal for the CF, (0,11,0) state
a) without surface, b) Wlth C)
difference

— C.I. Butoi, (Fisher), et al., JVSTA 18
2685 (2000)

(c)

Substrate |
Substrate 5

wd

difference

Laser
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Experimental work from Fisher, et al.

. . . o0t CF, molecules C,Fg plasma

» Fisher findsthat scattering 1400 - M W
depends on materia 100
= |
2 1000 - peam |t
£ !

— E.R. Fisher, Plasma Process. Polym g / Seatter

1, 13 (2004) = 600 - / V4
- ] / A
cL.‘)N 400 - f /’ “ Y
200 - /‘ 4 ‘\\‘\
0 . SUTSAWh
20 10 0 " 20
Distance along laser axis (mm)
2.0
) .. — ® C3Fgand CyFg
e Thisresult isimportant to our 2 18{ O HFPO
: 8 1 A& GF
conclusions A 1671 & H-c:ntaining } &
1.4 | — Linear Fit 4
~ £

—
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-
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=

=
-]
" L

=
)

20 40 60 80 100
% Crosslinking

=

Plasma Science and Applications Laboratories M atthew J. Goeckner




Molecular Dynamics models by Graves, et al.

* Molecular Dynamics
follows the movement of | . T
1000’ s of particles _ : » - )

— Interaction with incoming ' ' R D
particles g n

— Include as many chemical and ' :
physical processes as possible /

« Example / @ ©2ML . ®)
_ &Si bombarded by 2 1. L ———

monolayers (ML) of 200 eV ' S ; - ;
Art : .
— Showsinitial and final
positions of initial surface (top) | 2
and initial bulk (bottom) atoms be.s e e £ )
— D.B. Gravesand D. Humbird , " '
Appl. Surf. Sci. 192, 72 (2002)

(©) (d)

/
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Molecular Dynamics models by Graves, et al.

Depth {'5')_{ Species ciensity (arzb)
0

Chemistry isfound to play a
role in this process
— Exampleresults

— Elemental profiles and structure
depend on incoming flux - CF, F

Increasing ()

and Ar*
» a=9,0,1 F/CFZ
» b=8,1,1
» ¢c=7,2,1

— D. Humbird and D.B. Graves, JAP
96, 65 (2004)

The shift in speciesdensity
seen hereisimportant to our
conclusions
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Plasma models by Kushner, et al.

RF SUPPLY (™) |\\iPEDENCE
MATCHING

 Full model of complete system W] NeTwoRK
— Useahybrid (fluid and Monte N GFa. CoFe. PRODUCTS
Carlo) to pr edict PUT GASES T ___:g_:c.;gm :——-— eg:SiF4, CO, CO2
» plasma (ions and electrons) ’—T_h
» Neutrals (all radicals) )
a
— Requires ‘knowing’ all reaction
rates e ¢ CFn. SIF4 or g €O, SiF4
CFF c FF
— Thisisthe well known “Hybrid ‘ .
Plasma Equipment Model” - HPEM StETOHING I

— MJKushner, JAP 53, 2923 (1982)

e - =
!—~CF3-.F CF3 CF2+ CF+ FTF
FFp fe F.F2 'e F 91 F 91 F ‘e
FA— Fp
e

e + CFa =~ CF; ™ CF, *—_ CF — C +
e CF

e e e
CFg3l|e CFo €
F2

CyFg CoF4 =~ CuoFp

e
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Plasma models by Kushner, et al.

HPEM now used to routinely
predict gas phase densities
— 2-D and 3-D versions

— Example:

» |CP reactor,
» Arlc-C,Fg/O,/CO feed gas
» Predicted CXFy densities

» A.V.Vasenkov, Li, Oehrlen,
Kushner, VSTA 22, 511 (2004)

To further improve HPEM need to

Height {(cm)

understand surface process

— “We acknowledge that the dispositions
of surface reactions are critical to the
development of a successful reaction
mechanism for the low-pressure plasmas

of interest.” =
» A.V.Vasenkov, Li, Oehrlein, %,,
Kushner, JVSTA 22, 511 (2004) =

?)i‘,

15k o B Quartz
Coils .-*"—"-a‘ﬁf.'.\ window.
o B S A
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E10 e iNNEL
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/ TYPICAL INTERACTIONSIN A PLASMA SYSTEM \

« PLASMA PHYSICS SUBSYSTEM

— gascollision processes
— surface collision processes

 GASPHASE CHEMISTRY SUBSYSTEM
— Feed gas
— Caoallisions with plasma (el ectrons)
— Caoallisions with other gases
— Caollisions with surfaces

« SURFACE CHEMISTRY/PHYSICS SUBSYSTEM

— Surfacereactions

i — Liberation of gas-phase chemicals
Plasma Science and Applications Laboratories
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DESIGN CRITERION: Plasma and Gas Source

Set out to build asystem in which “ALL”
free parameters on surfaces can be
systematically controlled

— Multiple diameters S

— Multiple source to chuck gaps N =t =

— Multiple surface materials (Al, ALO,, Si, etc) Gas —  |Rduction

— Hesated uniformly to 200+1 °C Inlet Caoil Langmuir
Quartz L Probe

Use awell understood plasma SourceWi”do""\% =

— Similar to GEC ICP reference cell source

Use a simple Fluorocarbon gas
— CF,(All datain talk)
— C,Fg (Runsjust starting)

Matching

Network

Plasma Science and Applications L abor atories

8" Diameter Wall

To
Pump
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Experimental Setup
Tools

- Modu.ator

Inner Wall

Adjustment
Knob

Detector

Nicolet Nexus 870
FTIR bench

Object Mirror

Field Mirror
Ellipsometer
Analyzer Chamber
\ f
el e [nstuMulti-PassFTIR
* Insitu Spectroscopic ellipsometer — 4-40 pass White- type cell with MCT
— Typical 240 to 800 nm cooled detector
— 633 nm for timeresolved — Typical 16 passes, 512 scan averaging,

- -1
_ leed angle (~ 720) 650 4000 cm
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Approach to study

Use both experimental and modeling (HPEM) to understand compl ete system
— Withinitia studies from standard GEC reactor (for comparison)

MGEC studies
— Modeling studies using HPEM include
» Examined sticking coefficients
» Chamber geometry
— Experimenta studiesinclude
Etch/deposition rates (via ellipsometer)
» Langmuir probe measurements (CF,, Ar O,)
» Gas phase chemistry (FTIR, OES/acinominty)
Surface chemistry (viaXPS, ATR-FTIR, FTIR)

M

M

Want to understand how processes on substrate are influenced by
— Walls (surface phase chemistry)
— Gas

/
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Initial HPEM Study of sticking coefficient

Wall diameter (cm) Gap (cm)
20.32 10.16
* Full DOE 20.32 15.24
— 2 chamber diameters 66.04 10.16
— 2 source-chuck gaps 66.04 15.24
— 2 sticking coefficients (each specie)
» 0% (no sticking) i cr cre crs
s 1% 0% 0 0 0
0% 0 0 1%
» Sticking coefficient (SC) isthe 0% 0 1% 0
per centage of radicalsimpacting 0% 0 1% 1%
awall that sticks 0% 1% 0 0
0% 1% 0 1%
0% 1% 1% 0
0% 1% 1% 1%
1% 0 0 0
1% 0 0 1%
1% 0 1% 0
1% 0 1% 1%
1% 1% 0 0
1% 1% 0 1%
1% 1% 1% 0
1% 1% 1% 1%
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Initial HPEM Study of sticking coefficient

1.01 ] T T
. 1007 . o F change E E ]
Boswd He .
* Plasma parameters 2 o8l | | L |
— Unaffected by sticking coefficients __ ‘*% 100 o CF. change 1 8
— Affected by chamber geometry L osss i e ’ 8
» 0.08 T T T T T T T T
% 1.00 A E —_—
. > A A
« Gas phase chemistry gool CF; change [
— CF, CF,, CF; only affect themselves § Tz: ' S T
— Faffectsitself and other species % o] §E v CF change [
0.98 - T T T T T T T T T T T
. . . L. 0.000 0.002 0.004 0.006 0.008 0.010
Effecu ve st Ck| ﬂg quff| clents can Change in Sticking coefficients
be estimated by setting SC for F N A e
then adjusting the others to get the W )06 ]
) 0.93- ]
correct result o 50
0.99—: <?£ I I I I I I I I v —
" 1 g v o
 Remember: This does not contain 5 oo ;
reactions on the walls S O é | | | N
Q OR7] - ]
Still really need to under stand N ooy ad ]
what happens on the walls! %‘ e -
0.96 ]
2 o] H E : .
0.90 s E /
0.87 I T T T T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010

F STICKING COEFFICIENT
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Approach to study

» Use both experimental and modeling to understand complete system
— Withinitia studies from standard GEC reactor (for comparison)

« mMGEC studies
— Modeling studies using HPEM include
» Examined sticking coefficients
» Chamber geometry
— Experimenta studiesinclude
Etch/deposition rates (via ellipsometer)
» Langmuir probe measurements (CF,, Ar O,)
» Gas phase chemistry (FTIR, OES/acinominty)
Surface chemistry (viaXPS, ATR-FTIR, FTIR)

M

M

o Want to understand how processes on substrate are influenced by
— Walls (surface phase chemistry)
— Gas

o Will start with standard results (etch rate) and compareto wall and gas
results

/
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SO, etch rates studies vs reactor geometry
Sour ce-chuck gap

20 SCCM CF 10 mTorr 20 SCCM CF 10 mTorr
400 . 400 -
300- O 450 W 66 cm WaII - { o 450 W 20 cm Wall |z| ‘=
=1 6 400W K g 1 3004 O 400 W -
£ w B | E A 350 W 0 !
gZOO- A 350W xxi % 1 £ 2001 ;g(]g @/, -
X 8K ; % /::(3 v E 1 ]
%100- v 300W 5/ .: i £ 100- ng@g A_
] | S C (4] 285
g, _oni® P S i |
200' ,g;}{iﬁ’ o 6cmGap . % S
-200- - - -200- 06 cm Gap |
o w 4cmGap. . 7 ® 4 cm Gap
-300 . . :
- - - - ' -300——r————r———— - -
-10 0 10 20 30 40 40 /0 10 20 30 40
Self-Bias Voltage (-V) Self-Bias Voltage (-V)
* Increasein source height lowersdeposition and etch rates as well as shifting the threshold
— Decreased Neutral Flux and/or 1on Density? Different etch yield?
« Significantly larger decreasein dep, etch and threshold with presence of wall

— Neutral flux limited by 20 cm wall? Ion density effected by gap? /
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SO, etch rates studies vs reactor geometry

Wall Diameter
20 SCCM CF 10 mTorr 20 SCCM CF 10 mTorr
500- 500— .
1 450 W ) 1 1
400+ g 400 W 4 cm GAF D - 400- S 288 w 6om GAF{
—=.on] & 350W D0 | = anal '
£ 3001 & 300w g 1 £ 300y ~ 350W 1
< 200 g 1 £ 20 ]
S ] ] & ) a7
£ 100 - £ 100 o i
3 - L w L L
0 © 0 =
£-100- . < 104 - .
S . . [ ] .
L2004 - w -200- -
-300.. 20 emwal -300: o 20 cm Wall ’
-400- K 66 cm Wall - -400- x 66 cm Wall |]
10 0 10 20 30 40 50 60 10 0 10 20 30 40 50 60
Self-Bias Voltage (-V) Self-Bias Voltage (-V)
« Wall diameter non-influential at 4 cm sour ce height.
« Wall diameter isinfluential at 6 cm sour ce height
— Wall causes a decrease in etch rate maximum and CFx deposition rates
— Greater fractional loss of neutralsto thewall at 6 cm sour ce height?
— GAP DOES matter - why?
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| nfluence of GAP

As a Function of Source Height

* Net power transmission 20 SCCM CF4 30 mTorr
decreased dueto increased L B s B e e B L B
reflected power in matching  5(. 30mTorr -
network. (*)

4 /'\.\
—_ 0 ./. ®
=
E .
E, -50- -
P |
&“ -100- -
_: o L
S
i -150- .
1| —=— 66 cm Wall ]
-2004 | e 20 cm Wall -

1 10 9 8 7 6 5 4 3
Source-Chuck Gap (cm)

» Deposition occurswith decreasing Gap
— Transition occursat < 6 cm with wall; <5 cm without wall

» Doesthesurface history matter?

/
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| nfluence of GAP - History matters!
As a Function of Source Height

T T T T L I - . - .
50 CF_etch 400 W, 30 mTorr || 66 cm Wall
SiO
T 0 oo I B A A AN 7
£
£
£ 50 ]
3
©
(1’4
< =100 - ]
8
L —m— High to Low Gap
-1504| ¢ Low to High Gap 7
T T T T T T T v 1 v I

9 8 7 6 5 4
Source-Chuck Gap (cm)

* |on assisted deposition shows hysterisis
— Dependent on pre-existing CFx film / ion assisted deposited film
— Dependent on chemisor ption sites?
— Doion energy or flux matter?
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lon Density
As a Function of Source Height

20 sccm CF, 400W, 38 mTorr

24 - P, Vo ala s 1) 1 .
504| —Oo— 20cmWwall 122
229 66 cmwall 20
— O e S 18 o
€3 20 16 &
£ ] 14 £
£ >"98; &
= 12 <
L5 ] =
s ©106- ! 10 -
= 08 %
Se o] 1,
(0 2184 {06 ©
) N e o4 —
200 ] Lot TER@450W, 30 mTorr 1oz
10 I T T T NI'@|400 W: 38 m-ll-on: | B ‘ 0.0

=
S
©

8 7 6 5 4 3
Sour ce-Chuck Gap (cm)

lon Density increases by an order of magnitude asthe gap is decreased

len ener gy inereases by ~ 10 eV with Gap
— lon assisted deposition isonly explanation for increased deposition
Wall playsrole- How?

Plasma Science and Applications L abor atories
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Absorbance (a.u.)

Surface (wall) deposition

FTIR data
Substrate etch Substrate deposition
02 T - . \. &
-C=CF time | i
_ ’ N\ cFChe
-
8
()
Q -0.025 41 —9200s
- 235s
01 s 280’ i
a V//\-CF, symmetric
< iy
\ / n‘,"
_0.050 - —-CF, asymmetric
0.0 o=~
1800 1600 1400 1200 1000 1750 1500 1'250 1600

Wavenumber (cm™) Wavenumber (cm'™)

Etch of substrate (S or SIO,) => deposition on walls
Deposition on substrate => cleaning CF, film from walls

Either etch or deposition can give handle on wall substrate interactions
Thelink islikely via the gas-phase chemistry
Will start with etch

/
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Absorbance

IR Spectrum during CF, plasma
Datafrom Si substrate etch => deposition on walls

1.51
1.0
CF Ih—
0.6 - 0.54 4 006 N CF,
- [
004 |
0.5 - 0.0 : . |
1290 1280 1270 \
41 0.010- \ 0.02- N\ CHE CF
| Mm 3 2
0.4 _ Lot WMWWMMMW,
] 0.00
034 0005, o COF, 1240 1200 1160 1120 1080
iy Unknown
0.2 — Co,
1 0.000- S|F4
0.1 — ! ' '
1 2400 2200 200\ 1800
0.0 - l »
! I ! I ! I
2500 2000 1500 1000

W avenumber (cm™)

Typical IR spectrum from S etch

Plasma Science and Applications L abor atories ————— Matthew J. Goeckner




Gas-phase chemistry studies

» Gas phase chemistry depends on a number of items
— SivsSIO, substrate
— Etch vsdeposition
— Wall temperature
— Wall diameter
— Wall material
» Clean
» Seasoned
» Others?? (Measurements starting)

We will be examining these to under stand the etch/deposition processes

Conditions for next few slides:
CF,- 10 SCCM, S5 mTorr,
400 W source, 70 W bias
S cm gap, 20.3 cm Al wall

/

Plasma Science and Applications Laboratories —————— Matthew J. Goeckner




Gas-phase data vs wall conditions, etch rates

Same conditions

Wall temperature (K)
300 350 400 450

| _ % _ 2T = deawal '
SO, etchisnot dependenton =2 1 o gseasoned wal I
o .=
— wall temperature O £ 1751 ©
— clean/seasoned © é 1 ® - O.
N |
_(% £ 150
S etchisdependent on 125' . . .
— wall temperature @ 80- a
—  clean/seasoned '§ (=) . O. n
5 £ 707 © m
NOTE: In both casesthe etch o = 604 © o ™
surface temperatureis N~ | ©
constant! 50

50 100 150 200
Wall temperature (°C)

/
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Gas-phase data vs wall conditions, etch products

Same conditions

Wall Temperature

SKJ Wall Temperature (K)
300 350 400

o~ 0530 350 400 450
o) ’ ! ! ™ . T T T T T T y T
? () = Clean wall = B Clean wall
g 4 o Seasoned wall S O Seasoned wall
) o %
o Ideal gas law o % %
2 {: 206 % é {) % %
= = }
& c
)
53] % © i i % ! i
: < |y
@ " 80 100 150 o © o4 0 50 100 150 200
0 50 100 150 200 o
Wall Temperature (°C) Wall Temperature (°C)

» Decreased SiF, density (‘confirms Si etch data)

e ~ Constant COF, density (‘confirms SiO, etch data)

NOTE: Gastemperaturelikely below ‘wall temperature - Other surfacesat ‘room’ temperature/
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Gas-phase data vs wall conditions, CF,

Same conditions

In comparison the feed gas density
decreases drastically

Wall Temperature (K)

— Density drops slightly more than ideal 300 350 400 450
gas Ia\N T T T T T T T T T
(c) m Clean wall
: o Seasoned wall
CF, breaks up alittle more -or- E6 - ? "
CF, production on walls drops QO deal gas law
o
Breakup should be due to plasma 24 {’@
— Plasmadensity and temperature approx g %
independent of wall temperature )
Increased breakup should not be 2 +
significant L é
O2
If less CF, produced at the walls 0 50 100 150 200

Suggestsincrease in CF, and CF,
production from the walls

OR

Suggests decrease in CF, and CF; loss to
thewalls

Plasma Science and Applications L abor atories
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Gas-phase data vs wall conditions
Same conditions

» Themajor radicalsin a CF, plasmaare, CF, Wall Temperature (K)

CF,, CF; 300 350 400 450
e CF |_5 not observed in any configuration , | ® CF, deanwals 5 €)
studied (=> n <~ 5 x10* cmr3) O CF, seasoned walls = <

» Under etch conditions:

* Ngp, and N, are functions of wall
temperature and wall conditions

o

— AsT,, bothn,andn,, uptoapoint

N

— Dirty walls are source of radical up to ~450 K

Density (103 cm3)

CF, film provides more CF,, CF, to gas
Or
Less CF,, CF;radicalslost to CF, film

1 -

Either way, we should be able to see by 0 50 100 150 200

growing film on HOT substrates Wall Temperature (°C)

Plasma Science and Applications L abor atories ————— Matthew J. Goeckner




Deposition rate vs substrate temperature and gap

No Bias - ‘cold’ walls

250
» Surface temperature measured on face o 4cm
of S substrate. = 200 A 5cm
- : : = ! o 5.75cm
» Deposition measured via ellipsometer =
— Each curve represents multiple runs on multiple E 150-
days. c
 Gapwasvaried from41to5.75 cm D 100
— 5mTorr CF4, 400 W power, chuck floating §
c
2 50
2
* What do the curvestell us? $ o
O
Region 1: exp drop 50 -
- likely chem or physisorb \foo 350 400 450 500
Region 2: linear drop Tsljbgrate(K)
- likely direct ion deposition
Region 3: exp drop
- likely temperature driven desorption \
Region 4. flat
- likely limit set by ion bombardment rate R
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Initial inter pretation of Temperature Data

At first blush

— Looks like trends seen with H,O
» Colder surfaces (0 °C) - Adsor ption
» Intermediate (~25 °C) - Balance

» Hotter surfaces (100 °C) -
Desor ption

If this holds then

— Simple heating will result in desorptio

— Simple experiment can test this
» Thick Film deposited
» Plasmaturned off
» Feed Gas off
» Heat the film and watch

Plasma Science and Applications Laboratories
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Deposition (etch) rate vs substrate temperature and gap

250
00- o 4cm
= ~— 200 A 5cem
S 02 = o 5.75cm
£ £
0 @
g 0.6 ©
c
S S
‘' -0.8- =
:
-1.0J
= O
1.2 : ' : _ : ' -50 ; . ; : r : ' :
300 400 500 600 300 350 400 450 500
T ( K) TSubstrate(K)
substrate
» Desorption curveissimilar in shape as high temperature part but not at fast
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Gas-phase data vs wall conditions, CF,

» The simplest mathematical model is:

DR C ARl pBot/RT

» This gives rise to fitting of

Gap A B C

cm nm/min nm/min  nm/min

4 8 10° 5.6510° 95

5 1.75 10° 9.5 10° 75

575 |4.95 107 42 10° 415
Vacuum 1.73 10°

CF, 1.73 10°

« E, is an adsorption process and represents an adsorption energy
These adsorption energies are the ~same! => energy physisorption
Matches reported CF, adsorption energy - 39 kJ/mol => likely CF,

o Cruden, Gleason and Sawin, Ultraviolet absorption measurement of CF2 in the parallel plate
pyrolytic chemical vapour deposition process, J Phys. D 35 2002, 480

« E,is an desorption process and represents an desorption energy
These desorption energies are the ~same! => energy non chemical
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Gas-phase data vs wall conditions, CF,

» The simplest mathematical model is:

DR C ARl pBot/RT

» This gives rise to fitting of

Eq
kJ.mol’ eV
33.6 0.35
33.4 0.35
31.2 0.32
33.4 0.35
33.4 0.35

* The ‘constants’ A, B, C may be functions of other parameters
e.g. A=A(ng, Ncp, Nepys Nepss Neps  on)

* For example, the ion current (or flux
Lets compare this to A, B, C

)ratiois 1: 0.83 : 0.72

ion

/
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Deposition model vswall conditions

1.2 |
——1
—0—A
--A-B
-m-C
T e
m
E /RT E,/RT
DR C Ae™ Be ™
‘‘‘‘‘ .y
4 5 5.5 6
Gap (cm)

*Data suPgeatsupaedtsishinkedrtd B, grelihkgd, afatéadependent of 1
Ce+ We khow that nqp,, neps, and nep, ~ constant
* We also know that E, is linked to CF,
*We alsotkndw thafm this mgginand n.p, ~ constant

C =const ,  in this regime -
This const (i.e. sticking coefficient) is ~ 0.05 or 5% if Teflon (~2% if porous) /
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Onemorebit of data
XPS data of deposited films

(]

£ 1.50 - T - T - T T ] 1.50 r . r . r . Y . r

6 {—=20cmwal [CF, on SiO, ] @ ] . |F:CratioofCF,onSiO, ,
2, 40 ]—®—66 cm wall X s ]l & . . T
t B 7 ] = 1.40 - 1 "
§ 1.30 _ SiO, etch _ o 1 | | -
5120 1 1 s /! .
® ] 1.20 - -
£1.10 5 + _ 1]
o - x - ' )
=1.00 o 110 ]
= 1 . - ]
"g 0.90 - T /‘ 1= 1.00 - l —=— 20 cm wall
= o~ — _ el —e— 66 cm wall |

40 45 S 5 60 40 45 50 55 6.0
Gap (fm) Gap (cm)

« Typeof Fluorine content in CF, film seemsto gover ned by sour ce height
— Likely ng / nep, increases with gap (Wearetrying to confirm this!)
— A and B might be functions n., / ng - where CF, is probably the primary fluor ocarbon

/
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/ So what do we know?

Deposition rate follows

DR C Ae®F Be&~

C (C~0.02 . )

ion

A B ? - From E, probably n.,

IfA B ngg - Then why the drop with Gap?
— Other radicals?
» Ncp very low

» Ny, Neps and Nep, ~ constants with gap
» BUT XPS data indicates np and gap (Still checking)

Perhaps A B ng g,/ ng

uT D
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e

So what do we know?

Assume that the deposited film is Teflon like
(In reality it is probably very porous and highly cross linked!)

The energy of the bonds are:

Bond| Ener

kJ.mol | eV
C-C| 370 |3.8
C-F| 448 | 4.6

Incident ions probably break these bonds at similar rates

If so, we can create a smple model of the growth.

Plasma Science and Applications Laboratories

/

Matthew J. Goeckner



Simple picture of ion assisted growth

| o, CF, lon*
|
F F FE F FF F F FF F FFF
L N A I L I e e
C—C—C—C—C—C——C— —C—C—C—C—C—CC—-C-
A T T O R N [ O (O I I
F F FF F FF F F FF F FFF

» Direct ion adsorption

 lon induced adsorption/desorption

— lon impact can break C—F or C—C bonds

— Growth can happen if C-F bond broken
» CF, fills broken bond
» CF, molecules need to be readily available => physisorbed radicals more likely to bond
» Would cause very porous, highly cross linked films

— Removal can happen if C—C bond broken
» Form gaseous species by F addition (e.g. CF,)
» Light CF, species can thermally desorb from the surface

/
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Simple picture of ion induced growth

I:2

I
F FFCFFF F F FF FF
] T
c—C—C—C—C—C—C— c—C—C—CCC
R Y e (A 1 I
F F FF F FF F FEFF F

» Thissimple picture seemsto explain alot of the published results
Examples:
— Fisher’swork snows that the CF, scattering coefficient depends on the C-C cross linking
— Graves work would suggest heavy cross linking (e.g. porous films) necessary for etch
— Several authors CF, being produced at wall
— ETC

/
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Conclusions

Deposition determined by
— Chamber geometry
— Surface temperature
— Surface material

This is probably why results vary so much

From experiments

DR 002, Ang/n, eRR

E,/RT
ione BnCFX/nF’ io
Ions seem to cause deposition through two processes
— Direct ion incorporation - with ~ 2% sticking coefficient
— Jon induced chemisorption and desorption
» Deposition two step - Physisorb -> Chemical bond

» Desorption two step - Bond destruction via ion impact -> thermal desorption

Probably explains CF, layer in etch

/
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Conclusions

 Still need to confirm functionality of A and B

« Still need to confirm ‘Sticking coefficient’ of ions
— Likely ion species/energy dependent
— Still need to examine

DR Congt , Ae™= Be™™
002 ' AnCFX/nF’ ioneEa/RT BnCFX/nF’ ioneEd/RT

1on

* Future studies will need to account for
— Deposition Surface temperature
— Etch surface temperature (?)
— Ion flux
— Jon energy (?)
— ALL radical specie fluxes to surface
— Surface type (?)
— Chemistries (Working with C F; right now. Cl, chemistries to be added soon.)
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