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Plasma Chemistry in a nutshell
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TYPICAL INTERACTIONS IN A PLASMA SYSTEM

• PLASMA PHYSICS SUBSYSTEM
– Gas collision processes
– Surface collision processes 

• GAS PHASE CHEMISTRY SUBSYSTEM
– Feed gas
– Collisions with plasma (electrons)
– Collisions with other gases
– Collisions with surfaces

• SURFACE CHEMISTRY/PHYSICS SUBSYSTEM
– Surface reactions
– Liberation of gas-phase chemicals
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So how does one solve this complex problem?
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• Often experiments are setup to study 
individual aspects of the process.

– Examples include (but are not limited to): 
» Coburn and Winters 
» Fisher (interaction of plasma generated 

radical beams with surfaces)
» Aydil (surface coverage and chemistry in 

plasma processing tools)
» Oehrlein (polymerization and surface 

chemistry in processing plasmas)
» Lawler (gas phase densities in lighting 

and other environments)
» Schoenbach (micro-hollow cathode light 

sources)
» Graves (prepared radical and ion beam 

interactions with surfaces) 

• Models can control all aspect of the 
process.

– Examples include (but are not limited to): 
» Kushner (numerical simulations of 

plasma processes and chemistry) 
» Graves (MD simulations)
» Economou (numerical simulations of 

plasma flow and chemistry)

Studies of Interactions in a Plasma

SUBSTRATE

SHOWERHEAD COILS

WINDOW

PUMP PORT

 CF3+ (100 = 3.0 x 10 11 cm-3)

100 80 60 40
20

5

time (s)

0
10
20
30
40
50
60
70

0 200 400 600 800 1000

Silicon etching:

XeF2
gas only

XeF2
gas and

Ar+ beam

Ar+

beam only

Coburn and Winters, J. Appl. Phys. 50, (1979) 
or In “Glow Discharge Processes” by Chapman (Wiley, 
1980) p317

M.J. Kushner, et al., J. Appl. Phys. 80, 1337 (1996).
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Experimental work from Fisher, et al.

• Imaging Radicals Interacting 
with Surfaces (IRIS) system

– Radicals produced in remote plasma
– Passed as molecular beam to sample 

chamber
– Material sample moved into and out 

of beam
– Use Laser induced Fluorescence used 

to compare 
– P.R. McCurdy, (Fisher), et al., RSI 

68 1684 (1997)

• Example results from CF2 on 
SiO2

– 300 K surface
– From C2F6 Plasma
– LIF signal for the CF2 (0,11,0) state 

a) without surface, b) with, c) 
difference

– C.I. Butoi, (Fisher), et al., JVSTA 18
2685 (2000)

difference



Plasma Science Laboratories Matthew J. GoecknerPlasma Science and Applications Laboratories

Experimental work from Fisher, et al.

• Fisher finds that scattering 
depends on material

– E.R. Fisher, Plasma Process. Polym 
1, 13 (2004)

• This result is important to our 
conclusions



Plasma Science Laboratories Matthew J. GoecknerPlasma Science and Applications Laboratories

Molecular Dynamics models by Graves, et al.

• Molecular Dynamics 
follows the movement of 
1000’s of particles

– Interaction with incoming 
particles

– Include as many chemical and 
physical processes as possible 

• Example 
– a-Si bombarded by 2 

monolayers (ML) of 200 eV 
Ar+

– Shows initial and final 
positions of initial surface (top) 
and initial bulk (bottom) atoms

– D.B. Graves and D. Humbird , 
Appl. Surf. Sci. 192, 72 (2002)

2 ML
200 eV Ar+
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Molecular Dynamics models by Graves, et al.

• Chemistry is found to play a 
role in this process

– Example results

– Elemental profiles and structure 
depend on incoming flux - CF2 F 
and Ar+

» a = 9, 0, 1 

» b = 8, 1, 1

» c = 7, 2, 1

– D. Humbird and D.B. Graves, JAP 
96, 65 (2004)

• The shift in species density 
seen here is important to our 
conclusions

Increasing
F/CF2

flux ratio
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Plasma models by Kushner, et al.

• Full model of complete system 
– Use a hybrid (fluid and Monte 

Carlo) to predict 

» plasma (ions and electrons)

» Neutrals (all radicals)

– Requires ‘knowing’ all reaction 
rates

– This is the well known “Hybrid 
Plasma Equipment Model” - HPEM 

– MJ Kushner, JAP 53, 2923 (1982)
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Plasma models by Kushner, et al.

• HPEM now used to routinely 
predict gas phase densities

– 2-D and 3-D versions

– Example: 

» ICP reactor, 

» Ar/c-C4F8/O2/CO feed gas

» Predicted CxFy densities

» A.V. Vasenkov, Li, Oehrlein, 
Kushner, JVSTA 22, 511 (2004)

• To further improve HPEM need to 
understand surface process

– “We acknowledge that the dispositions 
of surface reactions are critical to the 
development of a successful reaction 
mechanism for the low-pressure plasmas 
of interest.”

» A.V. Vasenkov, Li, Oehrlein, 
Kushner, JVSTA 22, 511 (2004)



Plasma Science Laboratories Matthew J. GoecknerPlasma Science and Applications Laboratories

Gas-phase
Chemistry

Plasma
Physics

Surface
Chemistry/

Physics

TYPICAL INTERACTIONS IN A PLASMA SYSTEM

• PLASMA PHYSICS SUBSYSTEM
– gas collision processes
– surface collision processes 

• GAS PHASE CHEMISTRY SUBSYSTEM
– Feed gas
– Collisions with plasma (electrons)
– Collisions with other gases
– Collisions with surfaces

• SURFACE CHEMISTRY/PHYSICS SUBSYSTEM
– Surface reactions
– Liberation of gas-phase chemicals
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DESIGN CRITERION: Plasma and Gas Source 

• Set out to build a system in which “ALL”
free parameters on surfaces can be 
systematically controlled

– Multiple diameters

– Multiple source to chuck gaps

– Multiple surface materials (Al, Al2O3, Si, etc)

– Heated uniformly to 200±1 °C

• Use a well understood plasma source
– Similar to GEC ICP reference cell source

• Use a simple Fluorocarbon gas
– CF4 (All data in talk)

– C4F8 (Runs just starting)

Matching
Network

Induction 
Coil

Quartz
Window

8" Diameter Wall

Langmuir 
Probe

Gas 
Inlet

To
Pump
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Experimental Setup
Tools

• In situ Multi-Pass FTIR 
– 4 – 40 pass White- type cell with MCT 

cooled detector
– Typical 16 passes, 512 scan averaging,  

650 - 4000 cm-1

• In situ Spectroscopic ellipsometer
– Typical 240 to 800 nm
– 633 nm for time resolved
– Fixed angle (~ 72°)
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Approach to study

• Use both experimental and modeling (HPEM) to understand complete system
– With initial studies from standard GEC reactor (for comparison)

• mGEC studies
– Modeling studies using HPEM include

» Examined sticking coefficients

» Chamber geometry

– Experimental studies include

» Etch/deposition rates (via ellipsometer)

» Langmuir probe measurements (CF4, Ar O2)

» Gas phase chemistry (FTIR, OES/acinominty)

» Surface chemistry (via XPS, ATR-FTIR, FTIR)

• Want to understand how processes on substrate are influenced by 
– Walls (surface phase chemistry)

– Gas
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Initial HPEM Study of sticking coefficient

• Full DOE
– 2 chamber diameters

– 2 source-chuck gaps

– 2 sticking coefficients (each specie)
» 0% (no sticking)

» 1%

» Sticking coefficient (SC) is the 
percentage of radicals impacting 
a wall that sticks
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Initial HPEM Study of sticking coefficient

• Plasma parameters 
– Unaffected by sticking coefficients

– Affected by chamber geometry

• Gas phase chemistry
– CF, CF2, CF3 only affect themselves

– F affects itself and other species

 Effective sticking coefficients can 
be estimated by setting SC for F 
then adjusting the others to get the 
correct result

• Remember: This does not contain 
reactions on the walls

 Still really need to understand 
what happens on the walls!



Plasma Science Laboratories Matthew J. GoecknerPlasma Science and Applications Laboratories

Approach to study

• Use both experimental and modeling to understand complete system
– With initial studies from standard GEC reactor (for comparison)

• mGEC studies
– Modeling studies using HPEM include

» Examined sticking coefficients

» Chamber geometry

– Experimental studies include

» Etch/deposition rates (via ellipsometer)

» Langmuir probe measurements (CF4, Ar O2)

» Gas phase chemistry (FTIR, OES/acinominty)

» Surface chemistry (via XPS, ATR-FTIR, FTIR)

• Want to understand how processes on substrate are influenced by 
– Walls (surface phase chemistry)

– Gas

• Will start with standard results (etch rate) and compare to wall and gas 
results
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• Significantly larger decrease in dep, etch and threshold with presence of wall

– Neutral flux limited by 20 cm wall?  Ion density effected by gap?

SiO2 etch rates studies vs reactor geometry

• Increase in source height lowers deposition and etch rates as well as shifting the threshold

– Decreased Neutral Flux and/or Ion Density? Different etch yield?

Source-chuck gap
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SiO2 etch rates studies vs reactor geometry
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• Wall diameter is influential at 6 cm source height
– Wall causes a decrease in etch rate maximum and CFx deposition rates 
– Greater fractional loss of neutrals to the wall at 6 cm source height?

– GAP DOES matter - why?

• Wall diameter non-influential at 4 cm source height.
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* Net power transmission
decreased due to increased 
reflected power in matching
network.

Influence of GAP
As a Function of Source Height

• Deposition occurs with decreasing Gap
– Transition occurs at < 6 cm with wall; < 5 cm without wall

• Does the surface history matter?
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Influence of GAP - History matters!
As a Function of Source Height

• Ion assisted deposition shows hysterisis
– Dependent on pre-existing CFx film / ion assisted deposited film

– Dependent on chemisorption sites?
– Do ion energy or flux matter?



Plasma Science Laboratories Matthew J. GoecknerPlasma Science and Applications Laboratories

• Ion Density increases by an order of magnitude as the gap is decreased

• Ion energy increases by ~ 10 eV with Gap
– Ion assisted deposition is only explanation for increased deposition

– Wall plays role - How?
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• Ion Density increases by an order of magnitude as the gap is decreased

• Ion energy increases by ~ 10 eV with Gap
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Surface (wall) deposition
FTIR data

• Etch of substrate (Si or SiO2) => deposition on walls
• Deposition on substrate => cleaning CFx film from walls

 Either etch or deposition can give handle on wall substrate interactions
 The link is likely via the gas-phase chemistry
 Will start with etch
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Gas-phase chemistry studies

• Gas phase chemistry depends on a number of items
– Si vs SiO2 substrate

– Etch vs deposition

– Wall temperature

– Wall diameter

– Wall material

» Clean

» Seasoned

» Others??  (Measurements starting)

We will be examining these to understand the etch/deposition processes

Conditions for next few slides:
CF4 - 10 SCCM, 5 mTorr, 
400 W source, 70 W bias
5 cm gap, 20.3 cm Al wall
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Gas-phase data vs wall conditions, etch rates
Same conditions

• SiO2 etch is not dependent on 
– wall temperature 

– clean/seasoned 

• Si etch is dependent on 
– wall temperature 

– clean/seasoned

NOTE: In both cases the etch 
surface temperature is 
constant!
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Gas-phase data vs wall conditions, etch products
Same conditions

• Decreased SiF4 density (‘confirms’ Si etch data)

• ~ Constant COF2 density (‘confirms’ SiO2 etch data) 

NOTE: Gas temperature likely below ‘wall temperature’ - Other surfaces at ‘room’ temperature
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Gas-phase data vs wall conditions, CF4
Same conditions

• In comparison the feed gas density 
decreases drastically

– Density drops slightly more than ideal 
gas law

 CF4 breaks up a little more -or-
 CF4 production on walls drops

• Breakup should be due to plasma
– Plasma density and temperature approx 

independent of wall temperature
 Increased breakup should not be 

significant

 If less CF4 produced at the walls
 Suggests increase in CF2 and CF3

production from the walls 
OR

 Suggests decrease in CF2 and CF3 loss to 
the walls
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Gas-phase data vs wall conditions
Same conditions

• The major radicals in a CF4 plasma are, CF, 
CF2, CF3

• CF is not observed in any configuration 
studied (=> nCF <~ 5 x1011 cm-3)

• Under etch conditions:

• nCF2 and nCF3 are functions of wall 
temperature and wall conditions

– As Twall  both nCF2 and nCF3  up to a point

– Dirty walls are source of radical up to ~450 K

 CFx film provides more CF2, CF3 to gas

Or

 Less CF2, CF3 radicals lost to CFx film

Either way, we should be able to see by 
growing film on HOT substrates

CF3 clean walls 
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Deposition rate vs substrate temperature and gap
No Bias - ‘cold’ walls

• Surface temperature measured on face 
of Si substrate.  

• Deposition measured via ellipsometer
– Each curve represents multiple runs on multiple 

days.

• Gap was varied from 4 to 5.75 cm 
– 5 mTorr CF4, 400 W power, chuck floating

• What do the curves tell us?
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Region 1: exp drop 
- likely chem or physisorb

Region 2: linear drop 
- likely direct ion deposition

Region 3: exp drop 
- likely temperature driven desorption 

Region 4: flat
- likely limit set by ion bombardment rate
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Initial interpretation of Temperature Data

• At first blush
– Looks like trends seen with H2O

» Colder surfaces (0 °C) - Adsorption

» Intermediate (~25 °C) - Balance
» Hotter surfaces (100 °C) -

Desorption

• If this holds then 
– Simple heating will result in desorption

– Simple experiment can test this

» Thick Film deposited

» Plasma turned off

» Feed Gas off

» Heat the film and watch

0° C25° C

100° C
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Deposition (etch) rate vs substrate temperature and gap
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Gas-phase data vs wall conditions, CF4

• The simplest mathematical model is:

• This gives rise to fitting of

RTERTE da BeAeCDR //     

Gap A B C Ea Ed

cm nm/min nm/min nm/min kJ.mol-1 eV kJ.mol-1 eV
4 8 10-6 5.65 105 95 -39.5 -0.41 33.6 0.35
5 1.75 10-6 9.5 105 75 -42 -0.44 33.4 0.35

5.75 4.95 10-7 4.2 105 41.5 -44.9 -0.47 31.2 0.32
Vacuum 1.73 103 N/A 33.4 0.35

CF4 1.73 103 N/A 33.4 0.35

• Ea is an adsorption process and represents an adsorption energy
These adsorption energies are the ~same! => energy physisorption
Matches reported CF2 adsorption energy - 39 kJ/mol => likely CF2

o Cruden, Gleason and Sawin, Ultraviolet absorption measurement of CF2 in the parallel plate 
pyrolytic chemical vapour deposition process, J Phys. D 35 2002, 480

• Ed is an desorption process and represents an desorption energy
These desorption energies are the ~same! => energy non chemical
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Gas-phase data vs wall conditions, CF4

• The simplest mathematical model is:

• This gives rise to fitting of

RTERTE da BeAeCDR //     

• The ‘constants’ A, B, C may be functions of other parameters
e.g. A=A(nF, nCF, nCF2, nCF3, nCF,  ion)

• For example, the ion current (or flux  ion) ratio is 1 : 0.83 : 0.72 
Lets compare this to A, B, C

Gap A B C Ea Ed

cm nm/min nm/min nm/min kJ.mol-1 eV kJ.mol-1 eV
4 8 10-6 5.65 105 95 -39.5 -0.41 33.6 0.35
5 1.75 10-6 9.5 105 75 -42 -0.44 33.4 0.35

5.75 4.95 10-7 4.2 105 41.5 -44.9 -0.47 31.2 0.32
Vacuum 1.73 103 N/A 33.4 0.35

CF4 1.73 103 N/A 33.4 0.35
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Deposition model vs wall conditions

RTERTE da BeAeCDR //   

•Data suggests that C is linked to  ion = (Isubstrate/area)
 C   ion  I

•We also know that nCF2, nCF3, and nCF4 ~ constant
 C = const  ion in this regime -
 This const (i.e. sticking coefficient) is ~ 0.05 or 5% if Teflon (~2% if porous) 

• Data suggests that A and B are linked and independent of I
• We know that nCF2, nCF3, and nCF4 ~ constant
• We also know that Ea is linked to CF2

 A  B  ? In this regime
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One more bit of data

• Type of Fluorine content in CFx film seems to governed by source height
– Likely nF / nCFx increases with gap (We are trying to confirm this!) 

– A and B might be functions nCFx / nF - where CF2 is probably the primary fluorocarbon

XPS data of deposited films
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So what do we know?

• Deposition rate follows

• C   ion (C~ 0.02  ion)

• A B ?   - From Ea probably nCF2

• If A B nCF2 - Then why the drop with Gap?
– Other radicals?

» nCF very low 
» nCF2, nCF3 and nCF4 ~ constants with gap
» BUT XPS data indicates nF  and gap  (Still checking)

 Perhaps A B nCF2 / nF

DR C Ae Ea /RT Be Ed /RT
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So what do we know?

• Assume that the deposited film is Teflon like
(In reality it is probably very porous and highly cross linked!)

• The energy of the bonds are:

 Incident ions probably break these bonds at similar rates

 If so, we can create a simple model of the growth.

Bond Energy
kJ.mol-1 eV

C-C 370 3.8
C-F 448 4.6
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Simple picture of ion assisted growth

• Direct ion adsorption

• Ion induced adsorption/desorption 
– Ion impact can break C–F or C–C bonds

– Growth can happen if C-F bond broken

» CFx fills broken bond 

» CFx molecules need to be readily available => physisorbed radicals more likely to bond

» Would cause very porous, highly cross linked films

– Removal can happen if C–C bond broken 

» Form gaseous species by F addition (e.g. CF4)

» Light CFx species can thermally desorb from the surface

F F F    F     F     F    F
|      | |      |      | |      |

––C––C––C––C––C––C––C––
|      | |      |      | |      |
F     F     F    F     F     F    F

F F F F     F    F
|      | |             | |     | 

––C––C––C––C––C––C––C––
|      | |      |      | |     |
F     F     F    F     F     F    F

F2
|

F F F    C     F     F    F
|      | |      |      | |      |

––C––C––C––C––C––C––C––
|      | |      |      | |      |
F     F     F    F     F     F    F

Ion+ CF2

F     F     F    F     F     F    F
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F     F     F    F     F    F 
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F  
|

–C–
|
F
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Simple picture of ion induced growth

• This simple picture seems to explain a lot of the published results
Examples: 

– Fisher’s work shows that the CF2 scattering coefficient depends on the C-C cross linking

– Graves’ work would suggest heavy cross linking (e.g. porous films) necessary for etch

– Several authors CF2 being produced at wall

– ETC

F2
|

F F F    C     F     F    F
|      | |      |      | |      |

––C––C––C––C––C––C––C––
|      | |      |      | |      |
F     F     F    F     F     F    F

F     F     F    F     F    F 
|      | |      |      | | 

––C––C––C––C––C––C–
|      | |      |      | |
F     F     F    F     F   F
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Conclusions

• Deposition determined by 
– Chamber geometry
– Surface temperature
– Surface material

 This is probably why results vary so much

• From experiments

• Ions seem to cause deposition through two processes
– Direct ion incorporation - with ~ 2% sticking coefficient
– Ion induced chemisorption and desorption 

» Deposition two step - Physisorb -> Chemical bond
» Desorption two step - Bond destruction via ion impact -> thermal desorption

• Probably explains CFx layer in etch

DR 0.02 ion  A nCFx
nF , ion e Ea /RT  B nCFx

nF , ion e Ed /RT
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Conclusions

• Still need to confirm functionality of A and B

• Still need to confirm ‘Sticking coefficient’ of ions 
– Likely ion species/energy dependent 
– Still need to examine

• Future studies will need to account for 
– Deposition Surface temperature
– Etch surface temperature (?) 
– Ion flux
– Ion energy (?)
– ALL radical specie fluxes to surface
– Surface type (?)
– Chemistries (Working with C4F8 right now.  Cl2 chemistries to be added soon.)

DR Const  ion Ae Ea /RT Be Ed /RT

 0.02  ion  A nCFx
nF , ion e Ea /RT  B nCFx

nF , ion e Ed /RT
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