Line Edge Roughness Reduction at the 90nm Technology Node for Contact and Trench Etched Features

NCCAVS PEUG User Groups Sunnyvale, CA January 13, 2005

> David Farber Bill Dostalik Brian Goodlin Robert Kraft Tom Lii

Silicon Technology Development Texas Instruments Dallas, TX

Acknowledgements – Thanks!

Paul Chintaplalli Maja Imamovic

Outline

- 1. Contact Overview/Problem
- 2. Contact Solution
- 3. Contact LER Result / Algorithm
- 4. Trench Overview/Problem
- 5. Trench Solution
- 6. Trench LER Result / Algorithm
- 7. Conclusion

Contact Overview/Problem

Photo

Shorting PFA

193 nm Resist w/conductive coat

248nm Resist w/conductive coat

LER Reduces Alignment Margin

Etch

Mechanism of the Problem

1. The problem originates in 193nm photoresist and is maintained in the pattern transfer process (etch)

Technology for Innovators[™]

TEXAS INSTRUMENTS

-U

Contact Solution Etch Profiles

OE Slope 87-88 in Square Hole

OE Slope 88-89 in Square Hole

Technology for Innovators[™]

V Texas Instruments

CT LER Results

CD IN Etch

CD OUT Etch

CT Parametric Results

CT Photoresist LER Algorithm

CT Etch CD IN LER Algorithm

100

150

50

W Texas Instruments

CT Etch CD OUT LER Algorithm

$$\label{eq:rms_dr} \begin{split} rms_{\delta r} &= 2.5 \ nm \\ \rho_{\delta r} &= 13.9 \ nm \\ max_{LER} &= 6.7 \ nm \end{split}$$

CT Quantative LER Comparison

Image	RMS Delta from	LER Range	Max LER
	Ideal Circle	(nm)	(nm)
	(nm)		
Photoresist	3.9	18.8	8.8
CD IN	6.6	37.1	19.2
CD OUT	2.5	13.9	6.7
CD OUT to CD IN	62 1	62 5	65 1
Improvement %	02.1	02:0	0011

Trench Overview/Problem

Photolithograph

Pre Etch

Post Etch

Photoresist	
BARC	
Сар	
OSG	
 SiC	

Post Etch

W Texas Instruments

Trench Solution

Trench Photoresist - LER Algorithm $rms_{\delta l} = 3.7 \text{ nm}$ $\rho_{\delta l} = 20.2 \text{ nm}$ $max_{LER} = 10.3 \text{ nm}$

Trench Etch CD OUT BARC and Cap Etch Only - LER Algorithm

 $rms_{\delta l} = 2.4 \text{ nm}$ $\rho_{\delta l} = 17.2 \text{ nm}$ $max_{LER} = 6.2 \text{nm}$

Trench Quantitative LER Comparison

Image	RMS Delta from	LER Range	Max LER
	Ideal Circle	(nm)	(nm)
	(nm)		
Photoresist	3.7	20.2	10.3
CD IN	6	41.6	19.4
BARC & Nitride Only	2.4	17.2	6.2
CD OUT	2.8	16.2	7.1
CD OUT to CD IN	52.2	61 1	62.4
Improvement %	55.5	01.1	03.4

Conclusion

- Line Edge Roughness (LER) can be reduced by an etch process for the 90nm node
- Key to reducing LER was a quick taper away from the 193nm photoresist (LER source)
- LER was reduced by >63% with the <u>CD OUT</u> etch profile approach on holes and lines
- Reduction in LER increased CT to poly alignment margin by 12.5nm for CT holes
- A quantitative method of evaluating LER was developed and used for process transfer

David Farber, <u>d-farber1@ti.com</u> Bill Dostalik, <u>w-dostalik@ti.com</u> Brian Goodlin, <u>goodlin@ti.com</u> Robert Kraft, <u>r-kraft2@ti.com</u> Tom Lii, <u>t-lii2@ti.com</u>

