MEMS Etching Technology

T.-K. Allen Chou Intel Corp. Sep. 9, 2004

Outline

- Overview
- Etching in surface micromachining
- Etching in bulk micromachining
- 3D MEMS etching technology
 - Complex 3D MEMS machinery
 - Through wafer via package
- Summary

MEMS etching overview

- Then MEMS etching technology initiated with CMOS etching technology
 - Fundamental pattern transfer
 - Lithography
 - Dry etching

- Wet etching
- Can re-use the depreciated CMOS equipments.
- Final release process (for moving parts) is the key that deviates MEMS etching from CMOS technology (need to have good selectivity to other structure materials)

BiCMOS with surface micromachnining

• A standard BiCMOS process follows by a final surface sacrificial layer (e.g., oxide) etching for final structure release

			SENSOR POLYSI		
THOX	3P\$G	N+ Runner	P		
		P-			
		SPACER LTO	E PLASMA OXIDE		
OXIDE	BPSG	SENSOR POLYSI	PLASMA NITRIDE		
POLYSI	ZZ LTO	🗱 METAL			
Analog Dev	vices BiMEMS integ	grated MEMS tech	nology.		
Core et al	., Solid State Techr	nol., 1993.			

CMOS with bulk micromachnining

 An infrared detector with standard CMOS process follows by a final bulk silicon etching for final structure release

Tezcan et al., IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003

MEMS etching overview

- Now and future Complex MEMS structures and etching technology have advanced beyond CMOS
 - MEMS structures are not limited by simple surface or bulk micromachining etch step
 - Deep wafer etching becomes popular
 - Etching technology in MEMS diversifies MEMS into complex 3D structures
 - CMOS related process starts to use MEMS etching technique
 - Final release etching remains the key in MEMS process technology (need to have good selectivity to other structure materials)

Outline

- Overview
- Etching in surface micromachining
- Etching in bulk micromachining
- 3D MEMS structure
 - Complex 3D MEMS machinery
 - 3D MEMS package
- Summary

Etching in Surface Micromachining

- Etching to produce MEMS pattern as standard CMOS process
- Etching to remove sacrificial material for the MEMS structure release
 - Sacrificial material
 - Oxide usually used for polysilicon structures (high temp. process).
 - 49% HF (>1um/min)
 - BHF (>0.1um min., depends on deposition of oxide) Sacrificial material
 - Vapor HF (very slow ER~350A/min)
 - Metal (low temp. process)
 - Cu with Cu etchant
 - AI with AI etchant
 - Polymer/polyimide/photoresist (low temp. process)
 - Solvent (e.g., Acetone)
 - O2 plasma
 - Polysilicon (high temp process) same etching approach as Si bulk etch
 - Si wet etchant
 - SF6 and XeF2 dry etchant

Vapor HF Release

Sacrificial polymer etch for surface micromcahining

 Plasma release or solvent release with CPD

TI DMD (Digital Micromirror Device)

CPD

- CPD is needed in some MEMS structures due to stiction issue if it is done by wet etch release
- Dry etch release will not need CPD

- a. 1) Exchange methanol with liquid CO2 (@ ~20C and 1200 psi).
- b. 1–2) Close off vessel and heat liquid CO2 to a supercritical fluid. There is no interface formed during this transition.
- c. 2–3) Vent vessel at a constant temperature above Tc. The CO2 exists in gaseous form.

Outline

- Overview
- Etching in surface micromachining
- Etching in bulk micromachining
- 3D MEMS structure
 - Complex 3D MEMS machinery
 - 3D MEMS package
- Summary

Etching in Bulk microchining

- Si Etch to produce
 - Mold for MEMS structure
 - Si as sacrificial material for structure release
 - Package via
 - Microchannel
- Glass Etch to produce
 - Package cavity, Via
 - Microfluidic channel

Isotropic Si etch

- Wet etch (HNA, hydrofluoric acid, nitric acid, acetic acid)
 HE+HNO3+CH3COOH+H2O
- Dry etch (usually for final release step)
 - SF6 RIE
 - Most common dry etch approach for sacrificial Si etch and release
 - XeF2 receives attention
 - 2 XeF2 + Si → 2 Xe (g) + SiF4 (g)
 - Advantages :
 - Highly selective to silicon with respect to AI, photoresist, and SiO2.
 - isotropic, large structures can be undercut.
 - Fast (~10µm per hour)
 - Gas phase etching, no stiction between freed structure and substrate

Single Crystal Reactive Etching And Metalization (SCREAM)

Si Anisotropic Wet etch

Anisotropic Si etchant

- KOH, EDP, and TMAH are commonly used with SiO2 as etch mask
- All etchants have good selectivity to heavy boron doped Si
- TMAH is safer and IC compatible with less selectivity to oxide compared to other etchants

Etchant/Diluent/Additives/ Temperature	Etch Stop	Etch Rate (100) (µm/min)	Etch Rate Ratio (100)/(111)	Remarks	Mask (Etch Rate)	
KOH/water, isopropyl alcohol additive, 85°C	B > 10 ²⁰ cm ⁻³ reduces etch rate by 20	1.4	400 and 600 for (110)/(111)	IC incompatible, avoid eye contact, etches oxide fast, lots of H ₂ bubbles	Photoresist (shallow etch at room temperature); Si_3N_1 (not attacked); SiO_2 (28 Å/min)	
Ethylene diamine pyrocatechol (water), pyrazine additive, 115°C	$\geq 5 \times 10^{19}$ cm ³ reduces the etch rate by 50	1.25	35	Toxic, ages fast, O ₂ must be excluded, few H ₂ bubbles, silicates may precipitate	SiO ₂ (2–5 Å/min); Si ₃ N ₄ (1 Å/min); Ta, Au, Cr, Ag, Cu	Deep boron doped Si
Tetramethyl ammonium hydroxide (TMAH) (water), 90℃	>4×10 ²⁰ cm ⁻³ reduces etch rate by 40	1	From 12.5 to 50	IC compatible, easy to handle, smooth surface finish, few studies	SiO ₂ etch rate is 4 orders of magnitude lower than (100) Si LPCVD Si ₃ N ₄	
N ₂ H ₄ /(water), isopropyl alcohol, 115°C	>1.5 \times 10 ²⁹ cm ⁻³ practically stops the etch	3.0	10	Toxic and explosive, okay at 50% water	SiO ₂ (<2 Å/min) and most metallic films; does not attack Al according to some authors ¹⁰⁴	Before etching

From Fundamentals of Microfabrication by Madou.

Si DRIE

- Bosch passivation/etching process approach
- high aspect ratio Si etching
- Through Si wafer etch with close-to-vertical sidewall
- High etch rate (>5um/min.) can be achieved but only applies to small exposure area (e.g., <10%)

Combination of deep RIE and isotropic Si etch

a) Deposit and pattern the isolating nitride layer;b) dry etch deep trenches to define the main body structure.

c) Deposit LPCVD sacrificial oxide and dope surface of the oxide; d) refill trenches with LPCVD polysilicon; e) etch back poly; f) pattern oxide; g) deposit, dope and pattern poly.

h) Deposit and pattern Cr/Au;
 i) SF₆ deep dry directional etch
 + undercut to release silicon structures/electrodes (thick resist used as a mask);

j) Strip resist; k) etch the sacrificial oxide layer to completely release the structure.

Ayazi et. al., JMEMS 2000

tsung-kuan.allen.chou@intel.com

• Dielectric charging affect etching direction

 (a) Si DRIE etch to create curved bottom profile

 (b) Isotropic Si etch to remove pillars

• (c) Thermal Oxidation to smoothen surface

 (d) Maskless field Si etch

 (e) Thermal oxide removal

Out-of-plane curved electrode

Glass Micromachining

DRIE

- Etching of borosilicate glass
- Up to 50 microns
- Positive taper
- Very smooth bottom

DRIE etching of borosilicate glass by LioniX

Glass Micromachining

- Wet Etching
 HF:HNO3:H2O
 - Au or Si is usually used as etch mask

X1,300

10Pm WD27

0018

10KV

Sandblasting Technique

- Direct particle bombardment
- Low tech but effective
- Also works on Si substrate

Outline

- Overview
- Etching in surface micromachining
- Etching in bulk micromachining
- 3D MEMS structure and package
 - Complex MEMS structures can be created by combination of various etching techniques
 - Through wafer via package
- Summary

Micromachined Acoustic Ejector Array

- gas pumping
- micro propulsion
- thermal management

Design and Fabrication of Cavity With Integrated Perforated Electrode

- Deep boron diffused Si (~15µm) serves as the electrode
- Perforation of electrode is done by DRIE through the deep boron diffused Si
- Electrode release and cavity formation are performed on the same wafer by anisotropic etching underneath the perforated electrode

Formation of Buried Cavity with Perforated Electrode

b) DRIE through deep-boron diffused silicon layer

Formation of Buried Cavity with Perforated Electrode

c) Transient anisotropic Si etch

Formation of Buried Cavity with Perforated Electrode

d) Buried cavity formation

Slit Opening Backplate Perforation	
Cavity Exit Cavity	
Silicon	

- Wafer bonding (Cavity wafer & Diaphragm Wafer)
- **BCB Patterning and Localized Bonding with Cavity Wafer**

Bonded Wafer

DRIE Membrane Release

Bonded Wafer

Etch Stop Oxide Removal

Bonded Wafer

DRIE Ejector Hole and Chip Separation Etch

Fabricated MEMS Ejector Array Chip

SEM of MEMS Ejector Array

Actuation of Addressable Resonator

Dry Ice Flow Visualization and Particle Levitation

• V_{op}=110V, f_{membrane}: ~68kHz • Dry ice particle velocity ~ 15cm/s

Design A one row addressed

MEMS etching for CMOS via package

Through wafer via and corner rounding

DRIE for through wafer via package

Wu et al., IEDM 2000

Fig. 4. SEM cross-section of substrate vias with an aspect ratio of 8. The substrate is 100-µm thick. Each via is 12-µm wide. These vias are overfilled.

Fig. 5. Top: SEM cross-section of top-sidewall of a 14- μ m wide x 103- μ m deep via. The nitride liner is 550-nm thick at the surface and 500-nm thick 1 μ m down from the surface. Bottom: cross-section of the mid-sidewall of a 38- μ m wide x 106- μ m deep trench. The nitride is 150-nm thick (260 nm at surface). Both are conformally lined with nitride and filled with Cu.

tsung-kuan.allen.chou@intel.com

Summary

- MEMS etching technology has deviated from traditional CMOS process with various etching approaches and combinations
- Complex MEMS structures require new etching capability which cannot be provided by traditional CMOS technology
- Cost & Prospective
 - Wet etching technology
 - High throughput and Low cost
 - Limited MEMS structure
 - Some may need CPD for final release with adding cost
 - Dry etching
 - Low throughput and high cost (especially DRIE)
 - Much more freedom on MEMS structure for various applications
 - Direct final release feasible with no additional cost
 - Etching rate and throughput is the key for cost-effective commercial MEMS products
 - MEMS etching is no longer limited by the CMOS process and can become a solution to some future CMOS technology