

Component Health Monitoring and Diagnostics in Plasma Etch Chambers using In-Situ Temperature Metrology

Paul MacDonald Michiel Krüger OnWafer Technologies, Inc.

Monitoring Wafer Temperature in a Plasma System to Diagnose Chamber Problems

- Etching is Impacted by Various Interacting Mechanisms
 - Direct Chemical Reaction, Reactive Etching, Deposition, Mask Erosion
- Etch Mechanisms are Extremely Sensitive to Temperature
 - Modern Plasma Reactors
 Control All Critical Parameters
 Externally
 - Temperature is a First Order Indicator of Etching Problems

Monitoring Wafer Temperature in a Plasma System to Diagnose Chamber Problems

Typical Plasma Etch Environment

- In-Situ Metrology Provides Wafer-Level Spatially Resolved Profiles for All Operating Conditions
 - External Controls and Probes Provide Limited Insight Into Chamber
- In-Situ Metrology is Vital for Fault Detection and Isolation

PlasmaTemp[®] *In Situ* Metrology Overview

- Base Material is SEMI Standard Wafer with Thermal Oxide Layer
- Thermistors Positioned for High Resolution Thermal Profiling
- Sensor Network Protected With High Purity Polyimide Coating
- "System on a Wafer" Electronics Module for High Speed, Autonomous Data Acquisition & Wireless Data Transfer

PlasmaTemp Usage For Thermal Modeling and Component Health Identification

- PlasmaTemp Used to Build Response Model
- Proprietary Software Analyzes Component Health Against the Model
 - Begin Mission
 - Load PlasmaTemp[®] Wafer in Standard Cassette or FOUP
 - Launch Automatic Transfer Sequence
 - Run Specialized Etch Recipe for Thermal Modeling
 - Variation of All Critical Parameters
 - Remove Cassette or FOUP
 - Analyze Data for Component Health
 - Repair / Replace Faulty Component(s)

OnWafer built all the required services for the SensorWafer metrology system right into a SEMI standard 300mm FOUP. Product is shown with its docking station.

IN WAFER

In Situ Metrology Sample Mission Data – Multi-Step Silicon Etch

CONFIDENTIAL

Thermal Profile Response Monitoring

- Hardware Components' Output Directly Effects Wafer Thermal Profile
 - Increasing RF Power Increases Mean Wafer Temperature
 - Small Change in Uniformity
 - Increasing Pressure Alters
 Thermal Profile from Center-Hot to Edge-Hot
 - Small Change in Mean Temperature
- Thermal Variation During Constant Process Condition Indicates Hardware Deviation

Modeling Methodology

- Standard Analytical Methods Used
 - Critical Variables are Selected
 - Series of Designed Experiments is Constructed
 - SensorWafer is Run in the Plasma Reactor with Designed Recipe
- Proprietary Software Algorithms Are Used to Deconstruct the Thermal Information
 - Thermal Shape Modeling Engines Break Down Data Spatially
 - Provides Across-Wafer Information for Each Modeled Parameter
- Resultant Output is Easy-to-Read Effect Maps
 - Uniformity and Magnitude Displayed for Review
 - Comparison to Baseline Model Information Identifies the Deviant Chamber Component, and the Specific Location of the Irregularity
- Time-to-Results is Less than One (1) Hour

A REAL LOOK INSIDE YOUR PROCESS **OnWafer's Complete Plasma Fault Detection System** Chamber Specific PlasmaRx[™] Thermal Profile Modeling Engine Deviation Identification Input Faulty Hardware f(W_b, W_s, P, ...) Identified for Immediate Hardware Corrective Action Component Output Analysis Engine⁄ 0 Input Thermal Response Surface PlasmaTemp™ -0.7 & Problem Edge Cooling Effect OnView™ CONFIDENTIAL IN WAFEF

Modeled Etch Parameters

- Three Etch Effects Modeled for this Paper
 - He Cooling Pressure
 - RF Power
 - Chamber Pressure
- All Three Parameters Demonstrate Significant Effects on Thermal Profile and Etch Performance

Helium Cooling System Model

Nominal Edge Cooling Effect

Nominal Center Cooling Effect Problem Edge Cooling Effect

- Helium Cooling System is Configured in Two Concentric Rings
 - Nominal Response Shown for Zone Response
 - Units are Normalized in °C / Torr of He
- Deviant Edge Cooling Effect Is Easily Characterized
 - Nominal Response Opposite from the Notch
 - Notch Area Unresponsive to He Pressure
 - Indicates System Failure or Obstruction
 - Center Shows Significant Effect

0

Indicates Leakage from Outer to Inner Zone

- Magnitude of the He cooling Effect for Each Zone Depends on the ESC and Cooling System Design
- For all Characterized Reactors, Inner Zone Response Dominates the Outer Zone Response
 - Maximum Response is Delivered by 200mm MERIE A
 - Inner Zone Response of Over 4°C / Torr.

- Bias Power Provides a More Concentrated Effect at the RF Input Feed
- Source Power Provides a More Concentrated Effect at the Edges of the Wafer
 - Units are Normalized in °C / Watt
- Comparison of Two Different Etch Systems

RF Power System Model

- Magnitude of the RF Power Effects Depend on the System Design
 - Bias Power Controls the Level of Ion Bombardment
 - Source Power Controls Plasma Density and is Less Direct
 - Average Bias Response is 1.6 7X Source Response
 - Notable Exception is Dual Power Reactor C
 - Well Known to Have Strong Source/Bias Interactions

A REAL LOOK INSIDE YOUR PROCESS

Pressure Control System Model

Nominal LAR Pressure Effect Nominal HAR Pressure Effect **Problem Pressure Effect**

- Nominal Pressure System Characterized for LAR and HAR Etch Reactors
 - Both Reactors Exhibit Strong Radial Symmetry
 - Magnitude Varies by Reactor Design
- Deviant Pressure Effect Is Easily Characterized
 - Strong Slit-Valve to Pump Port Effect
- Pressure Shifts as Little as 2mT Can Be Detected
 - All Units are Normalized in °C / mTorr

Improving Process Performance

- Control of Advanced Etch Processes Require an Understanding of the Effect of All Critical Input Parameters on the Wafer Surface
- Any Required Parameters
 Deemed Critical can be Modeled and Improved

Component Health Monitoring and Diagnostics in Plasma Etch Chambers using In-Situ Temperature Metrology

Summary

- Thermal Variation During Constant Process Condition Indicates Hardware
 Deviation within the Plasma Chamber
- Compelling Methodology Demonstrated for Identification of Deviant Critical Chamber Components
 - Spatially Resolved, In-Situ Data
- Effects of Any Critical Input Parameter are Derived with Our Analysis
 - Provides Opportunity to Optimize Wafer Temperature Profile (In Progress)
 - Uniform Temperature Profile as Desired in Gate Etch
 - Designed Non-Uniform Profile as Desired in SAC Etch

Component Health Monitoring and Diagnostics in Plasma Etch Chambers using In-Situ Temperature Metrology

Paul MacDonald and Michiel Krüger OnWafer Technologies, Inc.

