

"Electron Shading": Inevitable ... or Not ?

Wes Lukaszek

Wafer Charging Monitors, Inc. Woodside, CA 650-851-9313 Wes@charm-2.com

Experiments:

- Use 6-field mask to pattern 1.2 µm resist on CHARM-2 wafers
 Ouantify "electron
- *** Quantify "electron** shading" in:
- **#** Uniform etching plasma
- ***** Non-uniform etching plasma
- **#** High energy, high current implants
- ***** Low energy, high current implants

area	bare
resist	(no resist)
2 μm	1.5 μm
holes	holes
1 μm	0.5 μm
holes	holes

Uniform Plasma: Positive Potentials

No resist

Patterned resist

"Electron shading" evident on patterned wafer

Uniform Plasma: Positive J-V

No resist

Patterned resist

"Electron shading" depends on feature size

WAFER CHARGING MONITORS, INC.

WAFER CHARGING MONITORS, INC.

Non-uniform Plasma: Positive J-V Patterned resist No resist Wafer: Wafer: 06508A03 J-V Plot: Multiple Die -J-V Plot: Multiple Die -98110A02 2.0 2.0 Col,Row Col,Row 5,4 [1] 5,4 [1] 7,7 [2] 7,7 [2] 9,10 [3] 9,10 [3] very non-uniform J 1.5 J 1.5 11.13 [4] 11.13 [4] m m 1.0 1.0 A Α very non-uniform 1 non-uniform С С Μ Μ .5 .5 non-uniform 2 2 uniform .0 10. 12. 14. 16. 6. 8. 10, 12, 14, 16, 6. 8. 0 2 Volts Volts WAFER CHARGING MONITORS, INC. WAFER CHARGING MONITORS, INC.

Non-uniform plasma increases "electron shading"

 V_{1} wafer charging monitors, inc.

Non-uniform Plasma: pos. and neg. J-V

Positive J-V

Negative J-V

"Electron shading" is bi-polar

Charging in Ion Implantation

beam beam plasma

In high current implanters, wafers move across the ion beam \Rightarrow devices are exposed to positive and negative charging <u>pulses</u>.

Charge fluxes at wafer surface:

- Implanted ions
 - Secondary electrons
 - Plasma ions
- e⁻ Plasma electrons (low energy)

$$J_{net} = J_{beam}(1 + \gamma) + J_p - J_e$$

Positive charging is independent of hole size.

Negative charging is independent of hole size.

Volts

WAFER CHARGING MONITORS, INC

Die Group 5: 1.0u field of mask JeffS

Volts

WAFER CHARGING MONITORS, INC

Die Group 6: 0.5u field of mask JeffS

Volts

WAFER CHARGING MONITORS, INC.

Die Group 3: 2.0u field of mask JeffS

Plasma

Build-up of negative charge at inside top of resist features creates potential barrier for electrons, causing net positive charge collection at bottom of narrow resist holes. Collection of secondary electrons by positively-charged resist causes positive charging at bottom of resist holes. Effect is independent of hole size.

Ion Implant

Exp. 2: Pos. J-V: As+; 2um holes PFS: "low" vs. "high"

Low flood

High flood

Increased flood reduces positive charging.

WAFER CHARGING MONITORS, INC.

Exp. 2: Neg. J-V: As+; 2um holes PFS: "low" vs. "high"

Low flood

High flood

Increased flood increases negative charging.

WAFER CHARGING MONITORS, INC.

Positive charging is independent of hole size.

Negative charging is independent of hole size.

Volts

-6.

2

8.8 1171

10,8 [18] 12,8 [19]

+37 more

0

.2

WAFER CHARGING MONITORS, INC.

-.4

-.5

-10.

Die Group 5: 1.0u field of mask JeffS

-8

12,7

14,7 [16]

16,7 [17] 18,7 [18] 20,7 [19]

+40 more

0.

WAFER CHARGING MONITORS, INC.

2

- 4

-.5

-10.

Die Group 6: 0.5u field of mask JeffS

-8

-6.

Volts

13,7 [15]

15,7 [16] 17,7 [17]

19,7 [18] 21,7 [19]

+39 more

0.

-2

WAFER CHARGING MONITORS, INC

2

-.4

-.5

-10.

Die Group 3: 2.0u field of mask JeffS

-8.

-6.

Volts

Potentials depend on hole size \Rightarrow "electron-shading". Current densities below detection level (<15µA/cm²) \Rightarrow <u>nearly perfect charging balance</u>.

 V_{λ} wafer charging monitors, inc.

Collection of secondary electrons by positively-charged resist causes positive charging at bottom of resist holes. Effect is independent of hole size.

Low T_e plasma electrons from HD-PFS neutralize positive charge from the ion beam and secondary electrons. Nearly perfect neutralization was achieved.

Conclusions:

- *** "Electron shading" effect is measurable with resistpatterned CHARM-2 wafers.**
 - * Non-uniform plasmas significantly increase the "electron shading" effect in etching tools.
 - Charging in ion implanters depends on plasma flood system design and set-up, <u>not</u> on ion energy.
 - * Nearly perfect charge neutralization was achieved for 500 eV B⁺ using low T_e HD-PFS.
 - * This suggests that "electron shading" in etchers might be avoided if ion and electrons are independently controlled, as in high-current ion implanters.

Acknowledgments:

- Special thanks go to Dr. Jeffrey Shields, Dr. Sonu
 Daryanani, and Rohan Braithwaite of Microchip
 Technology Inc. for providing CHARM-2 equipment
 characterization data.
 - Special thanks go Dr. Mike Vella for discussion of ion implant results.

- * Analogous to "antenna capacitors"
- # EEPROM senses and records CCE potential
- More sensitive than"antenna" capacitors
- Calibrated to measure in Volts (incl. polarity)

CHARM[®] -2 Unipolar Potential Sensors

Analogous to "antenna capacitors"

- # EEPROM senses and records CCE potential
- More sensitive than"antenna" capacitors
- Calibrated to measure in Volts (incl. polarity)
- Cannot be "over-written"
 by opposite polarity

CHARM[®]-2 Charge-Flux Sensors

- Potential sensors with
 calibrated current-sensing
 resistors
- # EEPROM records the potential across the currentsensing resistor
- Calibrated to measure charge-flux in Amps/cm² (incl. polarity)

CHARM[®] -2 Unipolar Charge-Flux Sensors

- Unipolar potential sensors
 with calibrated current sensing resistors
- EEPROM records the potential across the current-sensing resistor
- Calibrated to measure charge-flux in Amps/cm² (incl. polarity)

