

Repairing Process-Induced Damage to Porous Low-k ILDs by Post-Ash Treatment

Anil Bhanap, Teresa Ramos, Anna Camarena and Ananth Naman

Honeywell Electronic Materials, 1349 Moffett Park Dr, Sunnyvale, CA 94089

The following people at Honeywell contributed significantly to this work

Rob Roth, Yohannes Negga, De-ling Zhou, Lei Jin, Amanuel Gebrebrhan Brian Daniels, Paul Apen

- Background/Problem statement
- Hypothesis/Proposed solution
- Experimental
- Results
 - Blanket films characterization
 - SLM structures characterization
- Conclusions

Challenges in integration of porous inorganic low-k dielectrics in Cu DD processing

- Adhesion (CMP compatibility)
- Sensitivity to plasma damage
- CD/Profile control
- Barrier integrity

ar Introduction

• K stability

Motivation

Porous Low-k materials are prone to void formation during Cu damascene processing

Figure 2: Voiding in MSQ film

Reference

Voiding in Ultra Porous Low-k Materials Proposed Mechanism, Detection and Possible Solutions

<u>Thieu Jacobs^{1,2}</u>, Ken Brennan^{1,3}, Ron Carpio¹, Karsten Mosig^{1,4}, Jing-Cheng Lin^{1,5}, Henri Cox^{1,2}, Walt Mlynko⁶, Jo Fourcher¹, Joe Bennett¹, Josh Wolf^{4,7}, Rod Augur^{1,2} and Paul Gillespie^{1,3}

¹International SEMATECH, 2706 Montopolis Drive, Austin TX 78741; ²Philips Semiconductors, Eindhoven, Netherlands; ³Texas Instruments, Dallas, TX, USA; ⁴Infineon Technologies, München, Germany; ⁵TSMC, HsinChu, Taiwan; ⁶IBM, Burlington, VT, USA; ⁷Intel, Portland, OR, USA

Reference

CVD Barriers for Cu with Nanoporous Ultra Low-k: Integration and Reliability

J. C. Lin^{1,2}, R. Augur^{1,3} S. L. Shue², C. H. Yu², M. S. Liang², A. Vijayendran⁴,

T. Suwwan de Felipe⁴ and M. Danek⁴.

¹ International Sematech, Austin, TX, USA;

² Taiwan Semiconductor Manufacturing Company, Taiwan, R.O.C.

³ Philips Semiconductor, The Netherlands;

4 Novellus Systems, San Jose, CA.

E-mail: jclinb@tsmc.com.tw

Proceedings of the International Interconnect Technology Conference, 2002, 21 (2002)

Main factors in porous inorganic Low-k voiding are:

A) Carbon depletion

B) Tensile Stress

Approach	Benefits	Issues
Reduce C-depletion using a non-damaging ash. e.g. H ₂ /He	Eliminates primary cause of C-depletion	Does not address C- depletion during other process steps
Replenish carbon through post-ash treatment	Repairs all prior damage Well established etch-ash processes can be used	Volatile emission
Toughening Agent (TA)		Optimize TA material/ process

ar Experimental Set-Up

Anil Bhanap

- Plasma damage (etch and ash) lead to significant reduction in carbon content (CH/SiO).
- TA-1 and TA-2 treatments replenish carbon to near post-cure level

- Reduction in carbon content (due to etch and ash) results in increased dielectric constant relative to post-cure k value
- Carbon replenishment by TA-1 and TA-2 treatments leads to restoration of dielectric constant to near post-cure level

Star Reduced Outgassing with TA-2

TDMS on NANOGLASS®E Films at various process steps

Etch and Ash of NANOGLASS[®]E Films results in increased outgassing

• TA-2 treatment is effective in significantly reducing outgassing, whereas TA-1 treatment does not reduce outgassing

tar Toughening Agent Enables Wet Clean

Effect of exposure to various wet clean chemistries on NANOGLASS®E films after etch-ash (control) and after etch-ash and TA-1 treatment (TA-1)

Wet Clean condition	Etch rate (Å/min)		DI water contact angle (degree)		
	Control	TA-1	Control	TA-1	
No wet clean			<10	122	
A (Dilute HF)	>1000	0	33	112	
B (Aqueous acidic)	5	0	< 10	118	
C (Semi-aqueous fluoride)	25	14	< 10	< 10	
D (Organoamine)	70	23	< 10	47	

- NANOGLASS E becomes hydrophilic after etch and ash, and has high etch rate in most wet clean chemistries
- TA treatment restores hydrophobicity, and improves resistance to wet clean chemistries

Star Blanket Film Summary

Properties	Method	As Cured NANOGLASS®E Films	Post Etch and Ash NANOGLASS®E	Post TA Treated NANOGLASS®E Films	
		(425°C/ 60 min)	Films	TA-1	TA-2
Carbon Content	FTIR CH/SiO ratio	0.0085	0.0048	0.0079	0.0085
Dielectric Constant	Hg Probe	2.20	3.10	2.45	2.35
Leakage Current (A/cm ²) @ 2 MV/cm	Hg Probe	2.73E-8	2.14E-4	1.88E-7	1.72E-8
Hydrophobicity	Contact Angle	65	<10	122	118

Elimination of Voids in ILD

FIB-SEM micrograph after Cu annealing

Both Toughening Agents are effective in preventing void formation

- Use of either TA treatment slightly reduces line-to-line leakage current
- TA treatment does not change median capacitance, but results in higher comb capacitance yield, due to fewer defects

- Residual moisture in un-treated NANOGLASS causes blisters, Cu corrosion and pitting, leading to wide serpentine resistance distribution.
- Wafers treated with either TA-1 or TA-2 does not show such defects, and has tight resistance distribution

- A post-ash treatment with Toughening Agents TA-1 or TA-2 restores the properties of NANOGLASS[®]E to its original state
- TA treatment eliminates voids in NANOGLASS[®]E SLM interconnect structures
- By increasing chemical and structural stability of the porous Low-k ILD, TA treatment can improve the process window (wet clean compatibility), SLM interconnect yield, and Cu reliability
- TA treatment may be applicable to other SiCOH based Lowk materials, enabling their application in the high volume production of advanced Cu interconnects