Turning the Evil into Good: Plasma Synthesis of Silicon Nanoparticles and Potential Applications

U. Kortshagen
Department of Mechanical Engineering
University of Minnesota

Support: NSF through grants ECS-9731568, CTS-9876224, DGE-0114372 (IGERT)
University of Minnesota Supercomputer Institute
Overview

- Introduction
- Single-crystal nanoparticles
- Nanostructured Si:H-films
- Modeling of nanoparticle growth in plasmas
Electrons and Ions

Electrons:
\[v_e \approx O(10^6 \text{ m/s}) \]

Ions:
\[v_i \approx O(10^3 \text{ m/s}) \]

Low pressure = Non-equilibrium

- pressure: 1-100 Pa
- \(T_{\text{gas}} \approx T_i \approx 300-2000K \)
- \(T_e \approx 20,000-50,000 \text{ K} \) (2-5 eV)
- Charge carrier density: \(n_i = n_e = 10^9-10^{12} \text{ cm}^{-3} \)

measured EEDF in Argon Plasma
Particles and reactors walls are negatively charged.
Why use LP-Plasmas?

- Reactor **walls and particles** are negatively charged.
- **Particles are confined** in the reactor.
- **Particles repel each other**
 \[\Rightarrow \text{Coagulation is suppressed.}\]
Single-crystal nanoparticles

A. Bapat1, C. Perrey2, Z. Shen3,
S. Campbell3, C. B. Carter2, U. Kortshagen1

1Mechanical Engineering
2Chemical Engineering and Materials Sci.
3Electical and Computer Engineering
Nanoparticles in inductive plasmas

T. Kim, Ph. D. Thesis
Nanoparticles in inductive plasmas

Z. Shen et al., J. Appl. Phys., submitted

measured
$\sigma_g \sim 1.03-1.1$
Simulation of Schottky Barrier Transistor. Left: Charge density for 50 nm particle under $V_{DS}=V_{GS}=1$ V. Right: Family of curves.
Nanoparticles in inductive plasmas

- Gas mixture: \(\text{SiH}_4: \text{He}: \text{Ar} \) (typ.: 1:19:80)
- Total gas flow: 3-4 sccm
- Total gas pressure: 500-700 mTorr
- \(\text{SiH}_4 \) part. pres.: 2-7 mTorr
- RF power: 120-150 W
- Plasma volume: 100 cm\(^3\)
Nanoparticles in inductive plasma

courtesy of C. Perrey, C. B. Carter
Nanoparticles in inductive plasma

Particles are Single-Crystal Si, possibly with oxide layer.

courtesy of C. Perrey, C. B. Carter
“Cubic” nanoparticle showing [001] diffraction pattern of diamond-cubic Si.
Single-Crystal Nanoparticle

SEM of Si Nanoparticle

courtesy of C. Perrey, C. B. Carter
Single-Crystal Nanoparticle

Unstable “Capacitive” Discharge Mode
Single-Crystal Nanoparticle

Particles from Unstable “Capacitive” Discharge Mode
Single-Crystal Nanoparticle

High-Speed ICCD movie
Science Fiction??

Electrical contact to amorphous nanoparticles.

Work of Heiko Jacobs’ group.

courtesy of Z. Shen, S. Campbell
What is next?

- Optimize plasma process: produce monodisperse particles.
- Study electrical properties ⇔ Campbell group.
- Understand if particles are extracted with remaining charge ⇔ Jacobs Group.
- Can charge be used for electrostatic manipulation? Focusing, deflection?

Demonstrate Nanoparticle Devices ⇔ Cambell, Carter, Jacobs groups
Nanostructured Si-films

S. Thompson1, C. Perrey2, J. Belich3, C. B. Carter2, J. Kakalios3, U. Kortshagen1

1Mechanical Engineering
2Chemical Engineering and Materials Sci.
3Physics
Nanostructured Si Thin Films

- Dispersed nanocrystallites in an “amorphous” matrix
- Compared to a-Si:H
 - Similar optical properties
 - Improved transport properties
 - Enhanced medium range order
 - Reduced Staebler-Wronski effect

HRTEM image of a 4 nm nanocrystalline inclusion.
Set-up for ns-Si Film Growth
ns-Si films

ns-Si:H film deposited at 1450 mTorr.
Film Structure

Images taken with a Philips CM 200 FEG with a spherical aberration corrector. Courtesy of C. Perrey and C. Barry Carter (Dept. of Chemical Engr. & Material Sci) with Dr. Markus Lentzen and Prof. Knut Urban (Research Center Jülich, Germany).
Optical Absorption Measurements

Constant Photocurrent Method

- a-Si:H, 300 mTorr, 5W, 5% SiH₄/He (reference)
- ns-Si:H, 1450 mTorr
- ns-Si:H, 1800 mTorr
- ns-Si:H, 1500 mTorr

\(\alpha (\text{cm}^{-1}) \)

\(h\nu (\text{eV}) \)

Density of States

- Valance Band
- Band Tails
- Defect States
- Mobility Gap
- Conduction Band

\(e^{-h\nu/E_0} \)
Free-standing silicon particles
Conclusions and Future Work

- ns-Si:H films produced with 2-3 nm crystals in film
- ns-Si:H show lower defect density than a-Si:H films.

Future Work:

- Role of particles in film?
- Co-deposition of particles of material A into films of material B.
Particle Growth Modeling

U. Bhandarkar, S. Warthesen, S. Girshick, U. Kortshagen

Mechanical Engineering
Particle Growth Scenario

3.8% SiH$_4$ in Ar, 117 mTorr

Particle Growth in Plasmas

Nucleation

Coagulation

Surface growth

primary particle
Overview over Growth Model

\[
A + B = C + D
\]

NUCLEATION

Si\textsubscript{11-13}

RECTIONS

Si\textsubscript{1} ---- Si\textsubscript{10}

CLUSTERING

0.4 nm --------------------- 100 nm

PARTICLE GROWTH

PLASMA PARAMETERS AND FLOW

SECTIONS

1 2 3 4

180
Effect of Gas Temperature

3.8% SiH$_4$ in Ar, 117 mTorr

all reactions at 393K
only diffusion at 293K
Growth and Diffusion

\[D_p \propto \frac{1}{d_p^2} \left(\frac{T^{3/2}}{m_g^{1/2} p} \right) \]

“safe size”: particles negative no diffusion

primary particles

growth

diffusion

size = growth rate x time

survived diffusion
Effect of Gas Temperature

3.8% SiH$_4$ in Ar, 117 mTorr

LIPEE measurement

$\propto N_p d_p^4$

Temperature dependence of growth rate and diffusion explains this effect.
Conclusion

Important Results of Model:

- Positive ion density is threshold density for coagulation.
- Anions are important for fast clustering reactions.
- Temperature dependence of diffusion explains retarded nucleation.