#### Turning the Evil into Good: Plasma Synthesis of Silicon Nanoparticles and Potential Applications

#### **U. Kortshagen**

Department of Mechanical Engineering University of Minnesota

Support: NSF through grants ECS-9731568, CTS-9876224, DGE-0114372 (IGERT) University of Minnesota Supercomputer Institute

#### Overview

#### Introduction

- Single-crystal nanoparticles
- Nanostructured Si:H-films
- Modeling of nanoparticle growth in plasmas

#### **Electrons and Ions**



Low pressure = Non-equilibrium

- pressure: 1-100 Pa
- $T_{gas} \approx T_i \approx 300-2000 K$
- T<sub>e</sub>≈20,000-50,000 K (2-5 eV)
- Charge carrier density:  $n_i = n_e = 10^9 - 10^{12} \text{ cm}^{-3}$

#### **Ambipolar Diffusion**



Particles and reactors walls are negatively charged.

- Reactor walls and particles are negatively charged.
- Particles are confined in the reactor.
- > Particles repel each other  $\Rightarrow$  Coagulation is suppressed.

A. Bapat<sup>1</sup>, C. Perrey<sup>2</sup>, Z. Shen<sup>3</sup>, S. Campbell<sup>3</sup>, C. B. Carter<sup>2</sup>, U. Kortshagen<sup>1</sup>

> <sup>1</sup>Mechanical Engineering <sup>2</sup>Chemical Engineering and Materials Sci. <sup>3</sup>Electical and Computer Engineering

#### Nanoparticles in inductive plasmas



T. Kim, Ph. D. Thesis

#### Nanoparticles in inductive plasmas







Z. Shen et al., J. Appl. Phys., submitted





#### Science Fiction!!



Simulation of Schottky Barrier Transistor. Left: Charge density for 50 nm particle under  $V_{DS}=V_{GS}=1$  V. Right: Family of curves.

#### Nanoparticles in inductive plasmas





gas mixture: total gas flow: total pas pressure: 500-700 mTorr SiH<sub>4</sub> part. pres.: **RF** power: plasma volume:

SiH<sub>4</sub>:He:Ar (typ.: 1:19:80) 3-4 sccm 2-7 mTorr 120-150 W 100 cm<sup>3</sup>

#### Nanoparticles in inductive plasma



courtesy of C. Perrey, C. B. Carter

#### Nanoparticles in inductive plasma



courtesy of C. Perrey, C. B. Carter



Particles are Single-Crystal Si, possibly with oxide layer.



courtesy of C. Perrey, C. B. Carter

"Cubic" nanoparticle showing [001] diffraction pattern of diamond-cubic Si.



courtesy of C. Perrey, C. B. Carter

#### SEM of Si Nanoparticle



Unstable "Capacitive" Discharge Mode



Partciles from Unstable "Capacitive" Discharge Mode



High-Speed ICCD movie

# Science Fiction??



Electrical contact to amorphous nanoparticles.

Work of Heiko Jacobs' group.

# What is next?

Optimize plasma process: produce monodisperse particles.

> Study electrical properties  $\Leftrightarrow$  Campbell group.

- ➤Understand if particles are extracted with remaining charge ⇔ Jacobs Group.
- Can charge be used for electrostatic manipulation? Focusing, deflection?

Demonstrate Nanoparticle Devices ⇔ Cambell, Carter, Jacobs groups

#### **Nanostructured Si-films**

S. Thompson<sup>1</sup>, C. Perrey<sup>2</sup>, J. Belich<sup>3</sup>, C. B. Carter<sup>2</sup>, J. Kakalios<sup>3</sup>, U. Kortshagen<sup>1</sup>

> <sup>1</sup>Mechanical Engineering <sup>2</sup>Chemical Engineering and Materials Sci. <sup>3</sup>Physics

# Nanostructured Si Thin Films

- Dispersed nanocrystallites in an "amorphous" matrix
- Compared to a-Si:H
  - Similar optical properties
  - Improved transport properties
  - Enhanced medium range order
  - Reduced Staebler-Wronski effect

C. Longeaud, J. Kleider, P.R. Cabarrocas et al./J. Non Cryst. Solids. 277-230 (1998) 96-99.



HRTEM image of a 4 nm nanocrystalline inclusion.

#### Set-up for ns-Si Film Growth





# ns-Si films



ns-Si:H film deposited at 1450 mTorr.

# Film Structure



Images taken with a Philips CM 200 FEG with a spherical aberration corrector. Courtesy of C. Perrey and C. Barry Carter (Dept. of Chemical Engr. & Material Sci) with Dr. Markus Lentzen and Prof. Knut Urban (Research Center Jülich, Germany).

#### **Optical Absorption Measurements**

#### 106 a-Si:H, 300 mTorr, 5W, 5% SiH<sub>4</sub>/He 105-(reference) **Mobility Gap** ns-Si:H, 1450 mTorr **Density of States** 104 ns-Si:H, 1800 mTorr (cm<sup>-1</sup>) e-hv/E0 ns-Si:H, 1500 mTorr 103 **Band Tails** Conduction Valance ಶ Band Band 102 10 E, i E\_' **Defect States** 1 1.5 2 1

hv

#### **Constant Photocurrent Method**

hv (eV)

#### Free-standing silicon particles



# **Conclusions and Future Work**

- Ins-Si:H films produced with 2-3 nm crystals in film
- Ins-Si:H show lower defect density than a-Si:H films.
- Future Work:
- Role of particles in film?
- Co-deposition of particles of material A into films of material B.

# Particle Growth Modeling

U. Bhandarkar, S. Warthesen, S. Girshick, U. Kortshagen

Mechanical Engineering

#### Particle Growth Scenario

3.8% SiH<sub>4</sub> in Ar, 117 mTorr



Boufendi & Bouchoule, Plasma Sources Sci. Technol. 3, 262 (1994)

#### Particle Growth in Plasmas



#### **Overview over Growth Model**



#### Effect of Gas Temperature



#### Growth and Diffusion



#### Effect of Gas Temperature

#### 3.8% SiH<sub>4</sub> in Ar, 117 mTorr



Temperature dependence of growth rate and diffusion explains this effect.

# Conclusion

Important Results of Model:

- Positive ion density is threshold density for coagulation.
- Anions are important for fast clustering reactions.
- Temperature dependence of diffusion explains retarded nucleation.