Plasma Diagnostics for Nanoscale Fabrication

Alexander A. Bol'shakov Brett A. Cruden Surendra P. Sharma

> October 9 2003

Ames Research Center NASA, Molfett Field, CA 94035

Presentation outline

Introduction:

micro/nano-electronics roadmap diode lasers

- Experimental setup
- Temperature determination
- Simulation of plasma mechanisms
- Estimation of densities of species
- Conclusions

Nanotube-based transistor

* S.J. Wind, J. Appenzeller, R. Martel, V. Derycke, P. Avouris, J. Vac. Sci. Technol. B

- ~20 atoms in circumference, ~2 nm in diam.
- Semiconducting or metallic
- Useful as transistors or interconnect

Nanorods/wires – nanolasers

Lasing output ZnO **Excitation** $\lambda = 380 \text{ nm}$ 6.

* M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science. © Alexander Bol'shakov

Current and future needs

- Advanced process control required
- Must be non-intrusive, compact, and simple
- Monitoring of chemical species: end-point detection process optimization and control contamination "management"
- Local temperature monitoring: plasma uniformity intentionally non-uniform (!?)

Semiconductor process gases

- Inert (e.g., Ar, He, N₂)
- Corrosive (e.g., HCI, HBr, SF₆, NF₃, CF₄)
- Highly Toxic (e.g., AsH₃, PH₃)
- Pyrophoric (e.g., SiH₄)
- Reactive (e.g., NH₃, N₂O, WF₆, CO₂, O₂)

Impurity transfer

More than 300 technology steps for one chip
High variety of materials in use

How to monitor processes?

Emission:

Absorption:

Fluorescence:

Electrical:

Mass spectrometry:

low resolution only emitting species limited if FTIR or UV diode lasers - ideal requires powerful lasers intrusive, cumbersome non-selective

© Alexander Bol'shakov

Room temperature operation

11.

Accessible elements

Probed already	Possible	Excited only
Al, Ba, Ca, Cr,	Ag, Co, Eu,	Ar, As, B,
Cs, Cu, Hg, I,	Fe, Ga, Gd,	Br, Cl, F, H,
In, K, La, Li, Mn,	Hf, Ho, Lu,	Kr, N, Ne,
Ph Rh Sm Sr	Mo, Nb, Nd	O P S Si
U, Y, Zr	Ni, Os, Re,	Xe, Zn & <i>etc</i> .
H_2O , OH , O_2 , CH ,	Rh, Ru, Sc,	N_2 , CI_2 , F_2 , CF ,
CO , CO_2 , CH_4 ,	Tb, Th, Ti,	CN, SiF, AICI
NH_3 , HCI , HBr	TI, Tm, V, W	and <i>etc</i> .

Diode laser characteristics

- Tunable over absorption features
- Provide spectrally narrow linewidths
- Compact and simple to use
- Can be multiplexed
- Commercially available
- Relatively inexpensive

Experimental Setup

Simplified Setup

Data acquisition, 0.1 kHz

Reflectance	L=50 cm	L=100 cm	Number of
	τ (μs)	τ (μs)	passes
96	0.04	0.08	25
99	0.17	0.33	100
99.9	1.67	3.33	1000
99.99	16.67	33.33	10000
99.999	166.67	333.33	100000

Etching ICP Reactor

Diagnostics objectives

- Determination of plasma parameters: gas temperature electron temperature degree of ionization
- Identification of species in etching plasmas
- Measurement of concentrations of species
- Simulation of plasma etching mechanisms based on acquired experimental data

Laser Scan over Argon Line

Absorption by Argon Plasma

Laser wavelength calibration

Ambient oxygen absorption

Temperature in Ar/N₂ plasma

Temperature in Ar/N₂ plasma

C Alexander Bol'shakov

[©] Alexander Bol'shakov

Emission from Ar plasma

Passive Optical Cavity

© Alexander Bol'shakov

Composite Spectrum of CF_x

Cavity Modes and Laser Line

- Laser is slowly scanned throughout ~400 GHz
- Cavity length is fast modulated within ±100 MHz

Detection of plasma species

- High anisotropy & selectivity in etching of Si over SiO₂ or SiN₃ is necessary; research in CF_x radicals plasmachemistry is needed
- Absolute densities of C_xH_y, CF_x radicals and kinetics in plasma can be measured by cavity absorption spectroscopy at ~1 km of the equivalent optical pathlength
- Useful for diagnostics, analysis, monitoring and control of both nano- and microelectronic fabrication processes and development of micro- and nanodevice-based sensors

Spot Size at Mirrors

V₃ Fundamental Band of CF₄

* B.A.Cruden, M.V.V.S.Rao, S.P.Sharma, M.Meyyappan, *Plasma Sci. Source Technol.* 32.

Emission from CF₄ Plasma

Species detected include C, C₂, F, CF, Si, O, CO

* B.A.Cruden, M.V.V.S.Rao, S.P.Sharma, M.Meyyappan, *J. Vac. Sci. Technol. B* 33.

Impurity Absorption

Interference-free window between 2.1-2.2 μm

* M.E.Webber, J.Wang, S.T.Sanders, D.S.Baer, R.K.Hanson, Proc. 28 Int. Symp.Combustion 34.

Sensitivity Estimates

Minimum absorption coeff. ~10⁻¹⁰ cm⁻¹Hz^{-1/2}
 CF_x radicals detection limit ~10¹¹ cm⁻³
 (λ = 2.12 µm; Cavity leakout time =100 µs)

 Single molecule absorption can in principle be detected at strong fundamental bands
 (α ~10⁻¹⁵ cm⁻¹Hz⁻¹/₂; λ = 8 μm)

Conclusions

- Diode lasers operating in the 0.3 2.3 µm region are convenient, compact, inexpensive, tunable, of spectrally narrow bandwidth, and require no cryogenic cooling
- Local and averaged temperature can be determined with different thermometric species
- Absolute densities of atoms, radicals and molecules can be monitored
- Multi-parametric measurements possible

Conclusions

- Checking overall chamber health in real time
- Chamber clean-up/fast start-up optimization
- End-point for small features, cost-effectively
- Dopant species detection for end-pointing
- Monitoring atomic metal species in ALD
- Replacing the slow techniques (TXRF, SIMS)
- B and P implants detection in gate etch
- Aerosol detection in photoresist processing

Acknowledgements

- Alexander Bol'shakov held NRC senior research associateship award at NASA Ames
 Research Center while performing this work
- Brett Cruden's work was contracted through Eloret Corporation