
Exhaust Management of Etch Processes

Joe Van Gompel, BOC Edwards

Exhaust Chemistry and Scrubber Technology

Families of Etch Gases

- Acid gases HF, HCI, HBr, BCI₃, AICI₃, SiF₄, COCI₂, COF₂
 - Very toxic, can corrode ductwork
 - Water reactive, water soluble
 - Water scrubbers, dry bed scrubbers

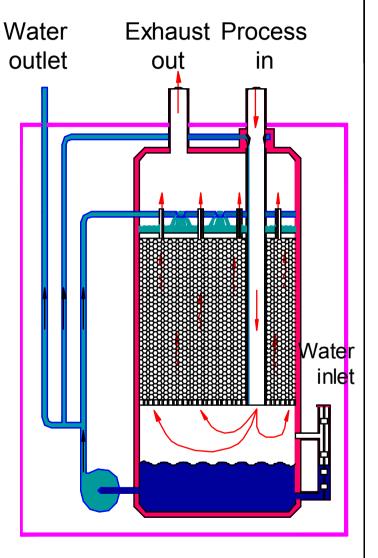
Corrosive gases (oxidizers) - Cl₂, F₂

- Very toxic, can corrode ductwork
- Water soluble, somewhat water reactive
 - Water scrubbers, dry bed scrubbers, fuel-heated combustors

PFC Gases - CF₄, CHF₃, C₄F₈, SF₆

- Not generally toxic, not corrosive
- Global warming gases; not water soluble
 - Dry bed scrubbers (reactive or catalytic), combustors, plasma

Countercurrent air flow desired


 Air and water are mixed in a tower filled with packing material (air enters bottom and water enters the top)

• Good N₂ inject design can prevent:

Water backstreaming
Subsequent blockages
Corrosion
Heated inlet required for aluminum etch

Handles acid gases, corrosives, and particulates well DECo not obstod

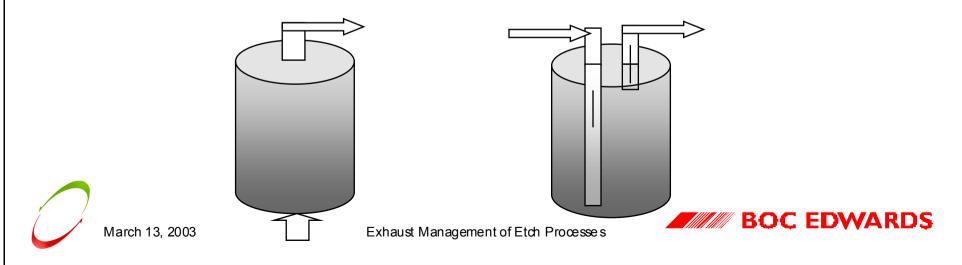
PFCs not abated

Please wait while the animation loads

Dry Bed Reactors

Granular solid medium in container; gases reacted

- Room temperature or elevated
- Can be consumed (chemisorption) or catalytic for PFCs


Different solids required based on process

Optimized for metal etch vs. poly etch vs. oxide etch

Endpoint detection required

- Tells when medium is consumed
- Succeptible to maximum gas flows (residence time)

Acid gases, corrosives, PFCs (depends on packing)

Combustors

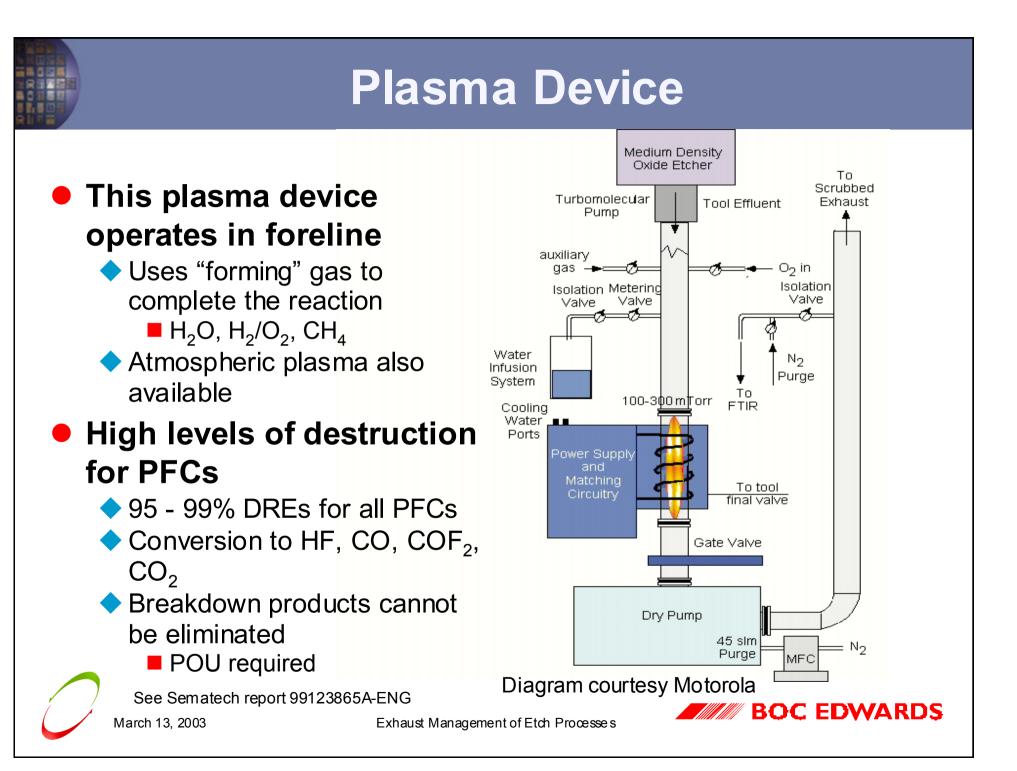
Combustors burn fuel to destroy exhaust gases

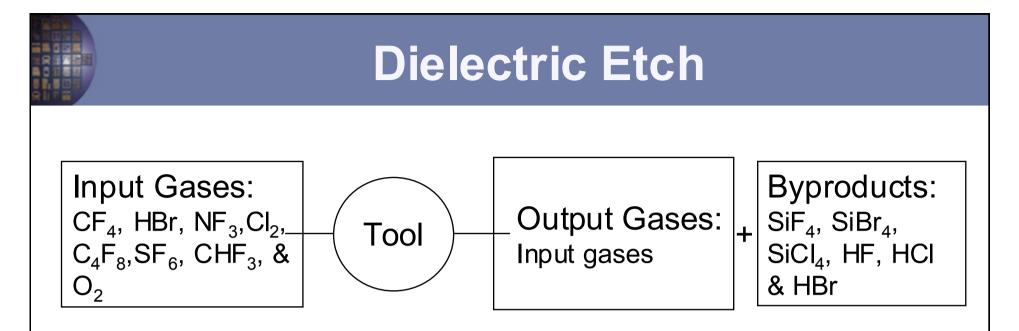
- \diamond Natural gas (methane, CH₄) or H₂
 - Fuel is source of H so halogens, halides can form HF, HCI
- PFC gases require more effort to burn completely
 - Additional fuel, O₂ may be needed

Most combustors have incorporated wet scrubbers

- Removal of particulate
- Removal of acid gases (HF, HCI)
- Removal of heat

Combustors use air


CDA or room air


Be wary of side reactions

 HBr may form Br₂ at high temperatures - combustors not recommended for poly etch

•Safety: Cl_2 is toxic (TLV=1 ppm) and an irritant; byproducts are acidic with TLVs levels below 5 ppm. SiX₄ will block ducts, generate HX (X = F, Cl, Br)

• Environmental: byproducts are acid gases, CF₄ is global warmer

Downtime: routine pm; relatively clean process (maintenance low)

Dielectric Etch

Water Scrubber

Will remove acid gases and most Cl₂

• Will not remove SF_6 , CF_4 , CHF_3 ...

Combust / scrub

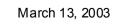
All the gases and byproducts will be combusted into non toxic chemicals and scrubbed from exhaust

Cold Absorbers / Hot bed Reactor

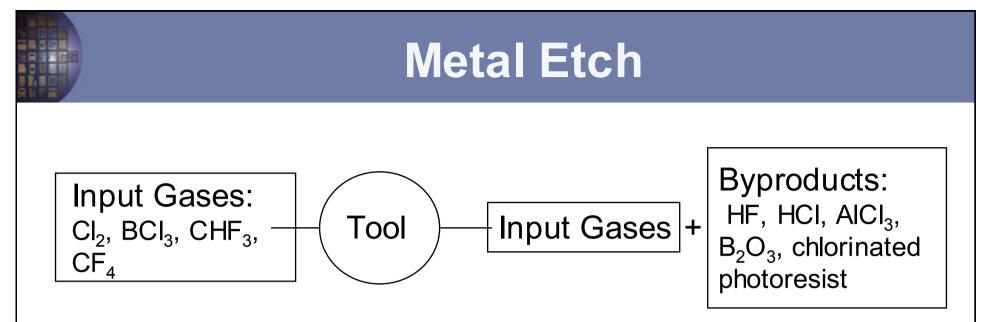
Ensure not only the input gases but the byproducts are also abated.

Plasma PFC abatement

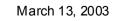
Ensure the abatement device does not generate other hazardous compounds



Dielectric Etch


- Input: CF₄, HBr, CHF₃, SF₆, Cl₂, HCI, NF₃, C₄F₈
- Output: Process gases, HX*, SiX*₄

	<u>CF</u> ₄	HX*	CHF ₃	Cl ₂		NF ₃	C ₄ F ₈	SiX* ₄
Water	Ν	Y	Ν	Υ	Ν	Ν	Ν	Y
Burn	?	N**	Υ	?	Υ	Υ	Υ	Υ
Cold Bed	Ν	Υ	Ν	Υ	Ν	Ν	Ν	Υ
Hot Bed	?	Y	Y	Y	Y	Y	Υ	<u> </u>
Plasma	Y	Ν	Y	Ν	Y	Y	Υ	N
Burn/	?	Y **	Y	?	Y	Y	Υ	Υ
Scrub								


*The "X" in SiX₄ and HX refers to F (fluorine), CI (chlorine), or Br (bromine). **HBr dissociates to Br_2 in combustors - not removed by scrubbers.

- Safety: Cl₂ is toxic (TLV=1 ppm) and an irritant; chlorinated photoresist is teratogen, carcinogen
- Environmental: byproducts are acid gases, CF₄ is global warmer
- Downtime: AICl₃ & BCl₃ will form solids in contact with moisture may cause blockages. AICl₃ sublimes below 100° C and is notorious for duct blockages after the pump. Heat trace required.

Metal Etch

Pumping: Run pump hot to keep acid gases in gaseous form. The exhaust line <u>must be heated</u> to keep AICI₃ from condensing.

Water Scrubber

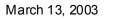
Removes acid gases and condensible byproducts

♦ Will not remove SF₆, CF₄, & CHF₃

Chlorinated photoresist is not water-soluble.

Combustion

• Electrically heated tube not recommended for Cl_2 ; may form ClO_2


Combustion must be done with excess H (fuel) to form HCI.

 Chlorinated photoresist may form chlorinated dioxins if not combusted thoroughly.

Hot bed dry reactor works well.

CoO may be high

Trapping of AICl₃ NOT recommended !!!

Metal Etch

•Input: CI_2 , BCI_3 , CHF_3 , CF_4

•Output: Process gases, AICl₃^{*}, chlorinated photoresist CP), HF, HCI

			CHF ₃		CF₄_	<u> </u>	<u>HF</u>	HCI
Hot Bed	Υ	Υ	Υ	Υ	?	Υ	Υ	Υ
Water	Y	Y	N	Y	N	N	Y	Y
Burn	?	?	Υ	Ν	?	?	Ν	Ν
Cold Bed	Υ	Υ	Ν	Υ	Ν	Ν	Υ	Υ
Burn/	?	Υ	Υ	Υ	?	Υ	Υ	Υ
Scrub								

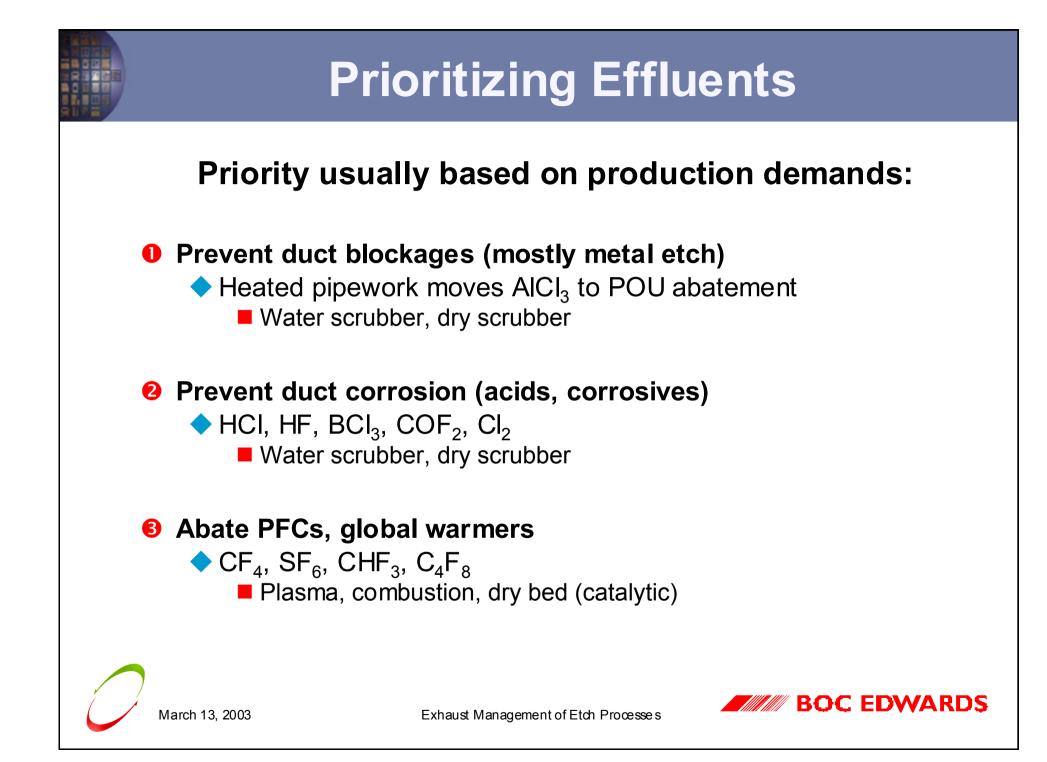
*AICI₃ condenses out as a solid after the pump and requires heat trace to prevent blockages. DO NOT COLLECT.

Prioritizing Effluents

It is the responsibility of the customer to select appropriate abatement:

Some considerations:

- Dilute or remove flammable gases to avoid fires
- Remove solids to prevent blockages
- Remove acid gases to prevent corrosion
- Consideration to municipal regulations
- Remove gases to below IDLH
 - IDLH (Immediately Dangerous to Life and Health level)
- Remove gases to below TLV
 - TLV (Threshold Limit Value)
- Remove all gases including non hazardous but environmentally damaging gases e.g. PFCs


Technology to use will be decided by performance level needed

March 13, 2003

Exhaust Management of Etch Processes

SapEx protectior

A Look into the Future

International Technology Roadmap for Semiconductors (ITRS)

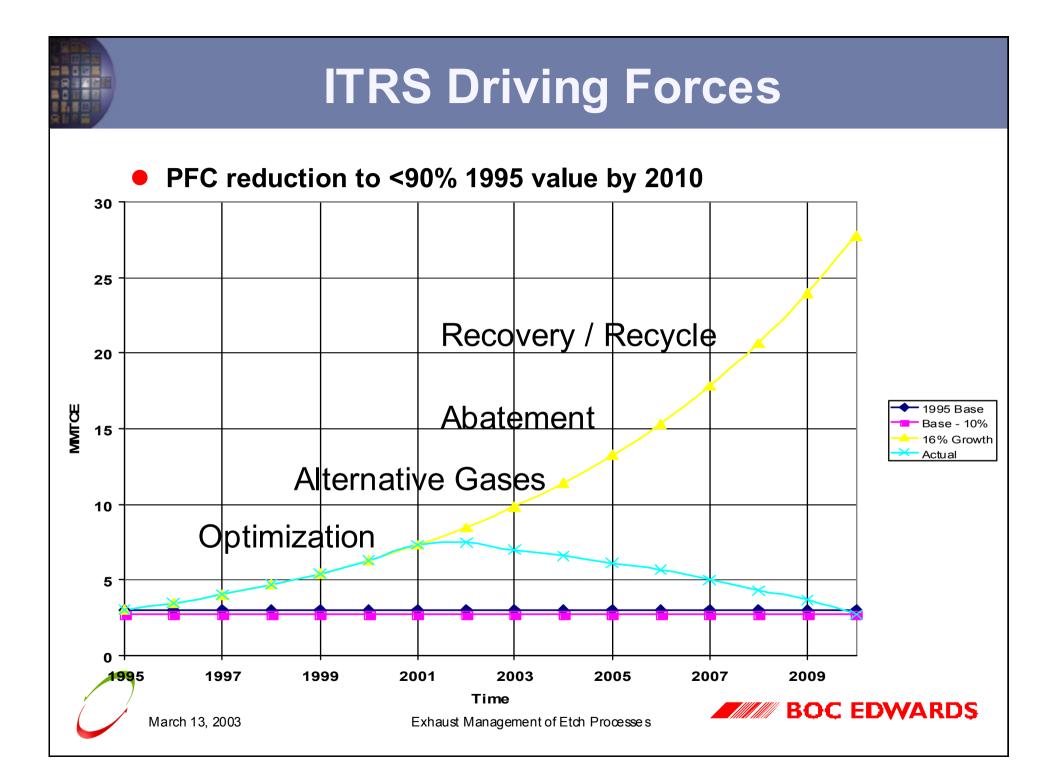
ITRS guides semiconductor industry into future

 Many details - from photolithogrraphy, geometry, and low k, to facilities usage and installation of new equipment

Utility Reduction - power

 50% reduction in 300mm production fab equipment energy consumption compared to 1999 200mm value by 2003
Per square inch of silicon

Year of Production	2001 130nm	2002 115nm	2003 100nm	2004 90nm	2005 80nm	2006 70nm	2007 65nm
Chemicals,Materials and Equipment Management Technology Requirements							
Ene rgy Cons umption							
Overall fab equipment (KWh/cm2)	0.5-	0.7	0.4-	0.5		0.4-0.3	
Fab facility (kWh/cm2)	0.5-0.7 0.4-0.5 0.4		0.4-0.3				
Tool energy usage per wafer pass (300mm vs 200mm); baseline 1999	1.5 1.0		1.0				

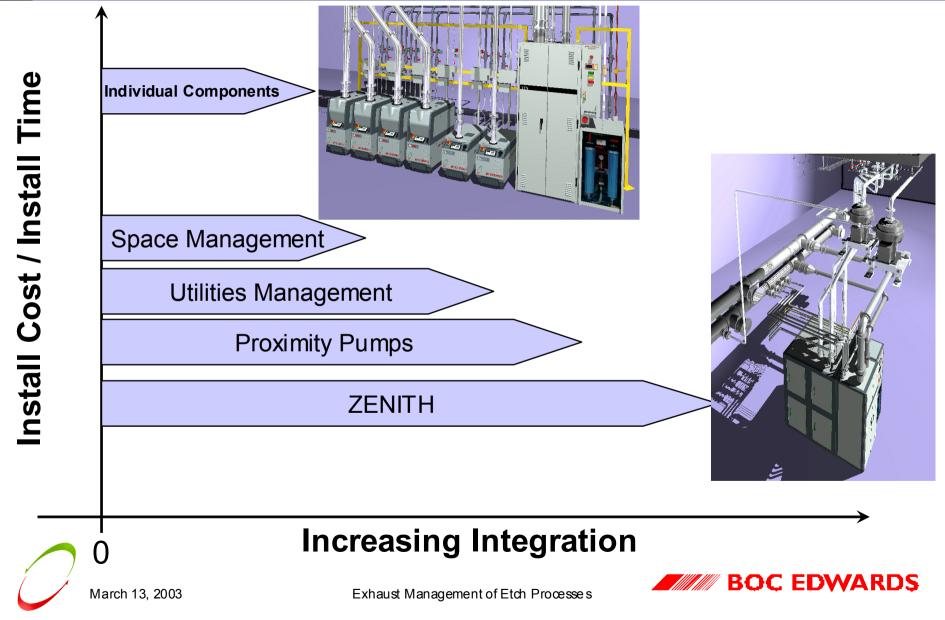

ITRS Driving Forces

• Utility reduction – water

Aim for 5% water usage reduction per year

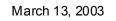
Year of First Product Shipment Technology Generation	1997 250 nm	1999 180 nm	2003 130 nm	2006 100 nm	2009 70 nm	2012 50 nm
Decrease net feed water use, gal / in ² silicon	30	10	6	5	2	2
Decrease UPW* use (gal / in ² silicon)	22	10	7	6	5	5
Lower water purification cost	Х	90% X	80% X	70% X	60% X	50% X

ITRS: Integration of Pumps and Abatement


- Combine vacuum pumps and with scrubbers in single system
 - Engineered to work together "out of the box"
- Operational Benefits
 - Wafer Security
 - Reduced COO
 - Fewer Components, less servicing
- Safety
 - Risk Minimisation/ Transfer
 - SEMI Certification
- Installation Cost Savings
 - Space Saving
 - Time/ Cost/ Ease of install
 - Single Vendor
 - Integration concept known as ZENITH

March 13, 2003

Integration Detail



Minimized Footprint

- Equipment footprint reduced by 44%
 vs. Individual components
- Required service footprint reduced by 68%

	Individual compon- ents	Zenith & Proximity Pumps
Footprint Reduction	4.45m²	2.47m³ 44%
Service Footprint Reduction	7.26m²	2.34m³ 68%



Reduced Utility Hook-ups

Save 60% on utilities connections

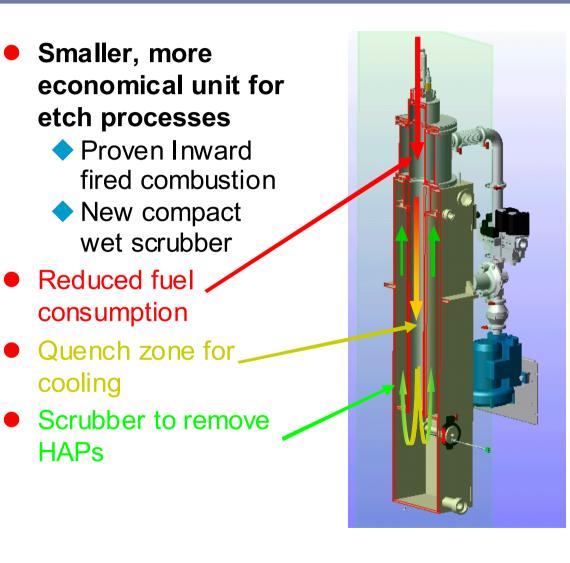
	Indiv idual compon- ents	Zenith & Proximity Pumps
PCW Supply	7	
PCW Return	7	-
Nitrogen	5	
Power	7	
Fuel	1	
Make up water	1	
Acid Drain	1	
Oxygen	1	
Vac-EMS Hookup	4	(
Bypass Hookup	4	4
Sub Wafer Forelines	6	4
F15 Extraction	0	
Acid Extract	1	
Total	45	18
Reduction		60%

Safety and Reduced Risk

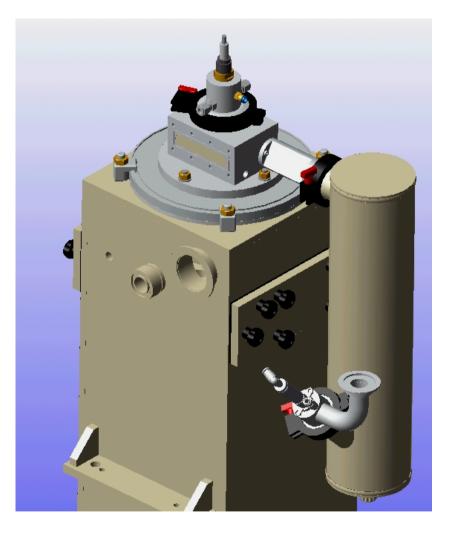
Zenith is tested and built to the following standards:

 SEMI Standards SEMI S2-0302 (EHS) SEMI S8-0701 (Ergonomics) SEMI S14-0200 (Fire risk mitigation) SEMI F15-93 (Leak testing)

 CE Legislation and Standards Machine directive 98/37/EC Low voltage directive 73/23/EEC EMC directive 89/336/EEC Potential explosive atmosphere directive 94/9/EC - ATEX Electrical safety laboratory measurement EN61010-1 EMC Emissions/immunity EN61326



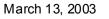
Mini – TPU For Etch Processes



March 13, 2003

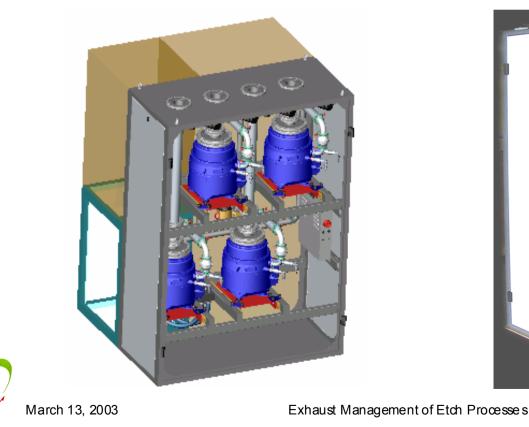
Atmospheric Plasma - Ionis

- Compressed high density electric field
- Inducement of a stable plasma
- Suitable chemical environment for the destruction of PFC gases



EPX – Dry Pumps

EPX500P


- Peak Speed 500 m3h-1
- ◆ Atmospheric 10⁻⁶ mbar
- Purge gas flow
- Only 1.4 kW power at Ultimate
- 600W idle mode

Zenith Etch Development Roadmap

- Incorporation of miniature TPU (CF₄ DRE > 90%) or Ionis atmospheric plasma (CF₄ DRE > 90%) into cabinet with EPX pumps
- Footprint ~ 1m X 2m for scrubber and 4 pumps
- Single electrical, N₂, water, PCW, and exhaust drops

Summary

- Etch exhaust byproducts contain corrosives and PFCs
- Some abatement technologies don't remove all the exhaust gases
 - This is for the customer to decide
- ITRS is driving towards integration of pumps and abatement
 - Smaller footprint, better CoO, lower utilites demand
- Etch-specific technologies are available to address ITRS guidelines

