The PE-ALD of Ta Based Metals/Nitrides: The Growth, Materials Properties, and Applications to Future Device Fabrications

TFUG/PEUG Northern California Chapter AVS

Hyungjun Kim and Steve M. Rossnagel

12/12/02

Thomas J. Watson Research Center IBM Research Division

Atomic Layer Deposition

- ALD (Atomic Layer Deposition): Self-limiting film growth method by alternate exposure of chemical species in layer-by-layer manner.
 - Good conformality
 - Easily controlled thickness at the atomic scale
 - Atomic level composition control
 - Large area uniformity
 - Low impurity at low growth temperature

For sub-100 nm node with Cu interconnect,

• Ultra thin/highly conformal diffusion barrier.

Potential Applications of ALD Metals/Nitrides in Nanoscale Devices

Cu diffusion barrier/adhesion promoter Cu seed layer

Ta and TaN Thin Films

Ta

- Good resistivity

 α phase (bcc): 15-60 μΩ cm
 (β phase (tetragonal): 170-210 μΩ cm)
- High thermal stability ($T_m = 2669 \text{ °C}$)
- No intermetallic compound with Cu
- Cu has very low lattice diffusivity in Ta.

TaN

- High chemical, mechanical, and thermal stability
- Various phase: solid-solution α phase Ta, hexagonal Ta₂N, hexagonal TaN, cubic TaN, hexagonal Ta₅N₆, tetragonal Ta₄N₅, orthorhombic Ta₃N₅

Binary Alloy Phase diagrams, ASM International, 1990

Ta and TaN layer for Cu interconnect

TaN/Ta bilayer liner

Both Ta and TaN have good DB property. Why bilayer liner?

- Good adhesion: resisting delamination during process or thermal processing, high EM resistance
- Liner/ILD and Cu/liner adhesion have conflicting dependencies on N content for $\text{TaN}_{\rm x}$
 - Ta adhesion on SiO_2 (low k) is poor: TaN on SiO_2 (low k) is require.
 - Cu adhesion on TaN is poor: Cu on Ta is required.
- TaN/Ta bilayer is the only viable option so far.
 - TiN/Ta causes corrosion for some CMP process
 - alpha Ta formation on TaN: low in-plane resistivity

Currently PVD is used, but if we want to implement ALD liner process... Need ALD process for both Ta and TaN liners!

Ref) D. Edelstein et al, Proc. 2001 IITC, 9 (2001).

N(G(G/4W/S522

Ta/TaN ALD : Precursors

Ta metal precursor

- Halides: TaCl₅, TaBr₅, TaI₅, all solid source
- MO source: N is contained

- Ta ALD: Ta halides + reducing agents
 - Molecular H₂: require above 700 °C

TaN ALD

- Halides + NH_3 : high resistivity Ta_3N_5
- MO sources: high C content

Strategy for Ta based metals/nitrides ALD

Experimental Setup for PE-ALD

Leak valve H_2 and/or N_2 -Quartz tube RF coil 200 mm wafer Differentially pumped Mass spectrometer Leak valve Turbo pump $\text{TaCl}_{\scriptscriptstyle 5}$ solid source Ceramic heater

NGG/AVS2002

Thomas J. Watson Research Center

Growth Procedure

1 Cycle TaCl₅ adsorption (4) 2 4 3 TaCl₅ purge TaCl₅ pump out pump out by H₂ LaCl[∠] 💢 🎝 💢 TaCl₅on plasma on plasma off TaCl₅ off H₂ on Gate valve off 2) extraction **↑ ↓**

 $TaCl_{5}(a) + 5H(g) \rightarrow Ta(a) + 5HCl(g)^{\uparrow}$

PE-ALD Ta: Self-limited Adsorption

- **Saturation condition:** $t_H > 4 \text{ s}, t_{TaCl_5} > 1 \text{ s}$
- Saturated growth rate: 5.3x10¹³ /cm² (0.08 Å/cycle)

NGC/NVR92

PE-ALD Ta: Plasma Exposure Time

PE-ALD Ta: Microstructure

- **Resistivity:** $\rho = 150\text{-}180 \ \mu\Omega \text{cm} \rightarrow \text{close to } \beta\text{-}\text{Ta phase}$
- **RBS:** Cl concentration = 0.5-2 at% at $T_s < 300$ °C

NGGAV\$2002

PE-ALD TaN_x : Mixture of N and H

- Growth rate (for N/Ta = 1): 1.2×10^{14} /cm² (0.24 Å/cycle)
- Easy control of N content

NGG/WS2002

PE-ALD TaN: Growth Temperature

30 $\mathsf{P}_{\mathsf{N}_2}/\mathsf{P}_{\mathsf{H}_2}$ = 0.025 **PE-ALD TaN** t_p = 5 s 600 25 $\tau_{TaCl_5} = 2 s$ Ωcm 400 Cl Η 200 ρ 0 0 200 100 300 400 $T_{s}(^{\circ}C)$

NGGAVS2002

PE-ALD TaN: XRD

NGGAVS2002

PE-ALD TaN: Resistivity

PE-ALD TaN: MEIS (Medium Energy Ion Spectroscopy)

10⁴ **PE-ALD TaN/Si** 30 A TaN Ion yield (Counts) TaNO_x <10 Å 10³ TaN Si Si 0 Ν Та 10² $-\gamma A A$ 80 85 90 95 100 Energy (KeV)

Comparison with Previously Reported ALD TaN

	Precursors	Phase	Resistivity (μΩcm)	Impurity ^{b)} (at %)	Density (g/cm³)	Growth rate (A/cycle)	Ref.
Thermal	$TaCl_5^{a)} + NH_3$	Ta ₃ N ₅	> 10 ⁵	Cl < 1	-	0.24	1)
	$TaCl_5^{a)} + NH_3 + Zn$	TaN	> 900	Cl < 4	-	0.15 – 0.2	1)
	TaCl ₅ +DMHy	Amorphous	Too high	Cl < 0.5	_	0.13 - 0.31	2)
	$TaCl_{5}^{a)+t}BuNH_{2}$ (allyINH ₂)+(NH ₃)	TaN	> 1300	Cl > 2 C: 1 - 20	-	0.1 - 0.35	3)
	TaCl ₅ +NH ₃ +TMA	Ta(Al)N(C)	> 6600	Al: 30-32 Br: 4	-	0.66 – 0.94	4)
	TBTDET+ NH ₃	Amorphous	> 10 ⁵	C: 15	3.6	1.1	5)
Plasma	TBTDET+H	TaN	400 - 2000	C: 15-35	7.9	0.8	5)
	TaCl ₅ +H+N	TaN	350	Cl < 0.5	9.8	0.24	This study

a) Similar results for TaBr₅

b) Cl content at 400 °C

1) M. Ritala, P. Kalsi, D. Riihelä, K. Kukli, M. Leskelä, and J. Jokinen, Chem. Mater. 11, 1712 (1999).

2) M. Juppo, M. Ritala, and M. Leskela, J. Electrochem. Soc. 147, 337 (2000).

3) P, Alén, M. Juppo, M. Ritala, M. Leskelä, T. Sajavaara, and J. Keinonen, J. Mater. Res. 17, 107 (2002).

4) P, Alén, M. Juppo, M. Ritala, T. Sajavaara, J. Keinonen, and M. Leskelä, J. Electrochem. Soc. 148, G566 (2001).

5) J.-S. Park, H.-S. Park, and S.-W. Kang, J. Electrochem. Soc. 149, C28 (2002).

NGGAVSON

PE-ALD TaN_x : With nitrogen plasma

N/Ta = 1.3, ρ = 10⁵ μΩ cm: high resistivity Ta₃N₅ phase
Low Cl (< 1%)

NGG/WS2002

PE-ALD TaSiN

• Use SiH₄ as Si source

- a: SiH₄ \rightarrow TaCl₅ \rightarrow H+N plasma
 - High resistivity, polycrystalline
 - Ta (15%) N(45%) Si(40%)
- b: $TaCl_5 \rightarrow SiH_4 \rightarrow H+N$ plasma
 - Low resistivity, amorphous film
 - Ta (20%) N(25%) Si(55 %)

Thermal ALD TaSi₂

NGGAVS2002

- ♦ Growth without plasma :TaCl₅ + SiH₄
- ◆ RBS: Ta/Si = 0.5, Cl < 1%, no H

Conformality

NGCAVS2002

Ta

Morphology

Thomas J. Watson Research Center

Thermal Stability: PE-ALD Ta

NGCAVS2002

- ♦ 30 minutes annealing in He.
- PVD Ta reacts with Si at 700 °C.^(Ref)

Ref) K. Holloway, P.M. Fryer, C. Cabral, Jr. J.M.E. Harper, P.J. Bailey, KH. Kellerher, JAP 71, 5433 (1992)

• Surface O reduced by annealing. (3Å thick after 900 °C)

Energy (KeV)

NGGAVS2002

Cu Diffusion Barrier Property Test Structures

Roughness, resistivity, phase change

NGG/WS2002

In Situ Characterization During Rapid Thermal Annealing

- At National Synchrotron Light Source, Brookhaven National Laboratory.
- ◆ 3 °C/s in He, from 100 to 1000 °C.
- Similar system without XRD for routine measurements

PE-ALD Ta: Diffusion Barrier Failure Temperature

NGGAVS2002

Thomas J. Watson Research Center

PE-ALD Ta: Comparison with PVD Ta

PE-ALD TaN: Diffusion Barrier Failure Temperature

Cu silicide formation: 620 °C

PE-ALD Ta and TaN: Diffusion Barrier Failure Temperature

NGGAVS2002

PE-ALD Ta/TaN Bilayer Cu Diffusion Barrier

• Bilayer deposition by switching off nitrogen flow

NGC/WS2002

Metal Gate for CMOS

Problems with poly-Si gate

- Gate depletion at inversion: increase in t_{eq}
- High gate resistance
- Reaction with high k
- Boron Penetration

---- Metal gate

Requirements

- Workfunction : \bigcirc 0.2eV from $E_c(n-FET)$ or $E_v(p-FET)$
 - nFET : Ta, Ti, TaN, TaSiN...
 - pFET: Ru, Pt...
- Thermal & chemical stability with gate oxide
- Low resistivity

Deposition Technique of Metal Gate

- Little damage to gate oxide
- Low temperature deposition with low impurity to avoid reaction with gate oxide
- Conformality at nanoscale structure

----- ALD of metal gate

replacement gate process^{Ref)}

PE-ALD TaN as Metal Gate

- ◆ **Capacitor structure:** PE-ALD TaN/100 Å SiO₂
- Work function: 4.4 ± 0.1 eV
- Little change in t_{ox} up to 1000 °C RTA

Nanoscale Device Fabrication

- Self-assembling diblock copolymer process
 - Alternative to photoresists for nanoscale dimensions

K.W. Guarini, C. T. Black, Y. Zhang, H. Kim, and I. V. Babich, 2002 3-Beams Conference, Anaheim, CA

NGG/WS2002

PE-ALD TaN Electrode

Pattern transfer to Si substrate: enhanced surface area
Fabrication of capacitor with high storage capacity

aspect ratio	capacitance increase
0.5:1	9%
1:1	98%
5:1	570%
10:1	1159%

20 nm pores, 42 nm spacing 4 nm oxide thickness

NGG/WS2002

- Successful growth of Ta based metals/nitrides at low T_s by ALD using chloride precursor and plasma.
- Ta and TaN PE-ALD processes as a function of key growth parameters
- Analysis of PE-ALD Ta and TaN thin film properties
- Applications of PE-ALD Ta based metals/nitrides in modern semiconductor devices processing

Collaborators

NGGAVS2002

- Andrew Kellock
- Cyril Cabral, Jr.
- Christian Lavoie
- Christophe Detavernier
- Dae-Gyu Park
- James Harper
- Kathryn Guarini
- Matt Copel
- Michael Lane
- Mike Gribelyuk
- Roy Carruthers
- Vijay Narayanan

B-Ta TaN/Ta TaSiN attribute 4 TIN/TILT/TIN/TIN/Tal Cr. TIN. TaN **WNx** Cu barrier ¥, ¢. ¥, ¥. ¥, х ¥. ¥. €. ¥, Adhesion to ILD 4 1 ø. чČ, ď, ¥. x ¢ £. ъ£ \$ Cu on liner adh. x Í. x ¢ X ¥, ₫. X 27X. 1 Liner on Cu adh. Ý. d. 2 2 2 ¥, ₫. ď. 2 4 Ý Low in-plane R х d, 2 Х d, х х x 4 V. ď. \checkmark 1 ď. х 1 £. Cu poisoning ? CMP. ď, X/~ 2 х X X ¥. £. £. 2 4 1 Single chamber ď. £. \$ ¥, ¢. √. ¢, х ¥, s, ď, ₹. Via, contact R х 2 1 ¥. 4 211 1 ¥, ¥. ¥. ď, Contact-R ¥. V. €. ъС, $\mathbf{\hat{z}}$ 4 Cu corrosion 2 X х X x/√ S. £., ¥. 21 4 Thermal stability 1 2. х X. \$ €. S. 1 2 Stress, cracking \mathbf{X} ď, s, ₹. √. \$ £. ¥. ¥. ÷. 2 1 + A 1 4 M V 1. 14 14 1. 1. 1 Step coverage ¥ + A 1. final х X. х X х ¢° х X х х

Table I. Evaluation factors for Cu liners.

= CVD available, A = lonized-PVD available, ? = not investigated

NGGAVS2002

Ref) D. Edelstein et al, Proc. 2001 IITC, 9 (2001).