WE MAKE THE SYSTEMS USED TO PRODUCE VIRTUALLY EVERY NEW MICROCHIP IN THE WORLD

ETCH CHALLENGES IN LOW K INTEGRATION

Raymond Hung Senior Integration Engineer Process Module Group

> PEUG October 10, 2002

Process Module Group

APPLIED MATERIALS*

OUTLINE

- Process Integration Challenges
 - Via First-No middle Etch Stop Dual Damascene Process Flow
 - AMAT 3LM Test Structures
 - Photoresist Poisoning
 - BARC Etch Back
 - Via Etch
 - Trench Etch
- Process Module Process Control
 - Thickness Feedforward to widen process window
 - Excursion Detection
 - iRM provides Trench Depth Endpoint
- Summary

PROCESS MODULETM **INTEGRATION SCHEME**

Via First Dual Damascene Scheme Offers Simplest, Lowest Cost Solution

PMG	Process Module Group	APPLIED MATERIALS*	
	CONFIDENTIAL	032002 BOD 3	

3-LM E-TEST STRUCTURE

BKM process flow

- Process and inspections steps
- Complete tool set in house
- Based on process window characterization and parametric performance
- Multiple lots establish baseline
 - Continuous improvement to increase yield
- Complete characterization
 - Physical properties
 - Defect performance
 - Electrical performance
 - 18 electrical parameters tracked for each lot
 - Success criteria consistent with world class manufacturing

Process Module Group

൘

PHOTORESIST POISONING

Resist Foot Due to Poisoning

Poisoning is more severe on edge of structure

FIB showing broken links due to poisoning

Resist Poisoning Manifests Through N Out gassing of Films During Processing

Process Module Group

APPLIED MATERIAL

ELECTRICAL YIELD SIGNATURE FOR PR POISONING

Defect density test structure

•Edge of the structures showed more serious PR poisoning and thus lower yield compared to that in the center of the structure

•Possibly due to the concentration variation of NHx at center and edge of the dense via array.

PMG	Process Module Group		5**
	CONFIDENTIAL	032002 BOD	6

VIA CHAIN YIELD AT VARIOUS M1 OLAP

AMAT test structures allow us to differentiate PR poisoning issue from general etch issues.
This is helpful in identifying the problem in the case of minor poisoning.

Note:

In general, large via to trench olap reduces the probability of misalignment and thus has higher yield

TLM1p2_H1_V1_P1_FR_A1_V20_meas_r2t_Rm

PMG

CURRENT TRENCH OVER VIA LITHOGRAPHY PERFORMANCE

Improvement In Resist Poisoning Obtained Through: Film, Resist and Integration Optimization

Process Module Group

APPLIED MATERIALS

T2 LITHOGRAPHY/ETCH CHALLENGES

Conformal and non-Conformal BARC have Limitations

PMG	Process Module Group		S*
	CONFIDENTIAL	032002 BOD	9

T2 LITHOGRAPHY/ETCH OPTIMIZATION

No fencing after T2 etch(No Etch Stop) No Residue after BARC etch-back DARC as ARC for T2 Lithography

0.13 μm Node T2 Scheme Was Moved to Full Fill BARC and Etchback to Improve Etch / Litho Interactions at M2

PMG	Process Module Group	APPLIED MATERIALS*
	CONFIDENTIAL	032002 BOD 10

VIA OPEN CORROSION

Cu corroded below via

Percent

No Cu Corrosion

Interaction between film, etch chemistry and Wet Clean optimized for high yielding Via Chains

Optimized Process

LOW & DEP/ETCH PROCESS CONTROL

Control Capability

- BD thickness feedback
- Etch Feed Fwd/Fdback
- Real Time, WTW
- Real Time Excursion Detection

PMG	Process Module Group	APPLIED MATERIALS*
	CONFIDENTIAL	032002 BOD 12

PROCESS CONTROL

Black Diamond (Closed Loop)

Timed Via Etch (No Feedforward) 5800 Post Via Etch BD Thickness (Å)

Ave: 5327 A, Stdev: 1.43%

Number of Wafers

418 425 569

1

Blanket Partial

Etch

5600

5400

5200

5000

4800

4600

3 5 114 21 365 5 <u>5</u>

Process Module Group

UCL

Mean

LCL

൘

VIA ETCH CONTROL

Experimental BD Thickness

FF to Adjust BD Etch Time

Closed Loop Control with Feed Forward Minimizes Variations in Barrier Loss

Process Module Group

APPLIED MATERIALS*

ī

TRENCH DEPTH CONTROL WITH IRM

൘

CLOSED LOOP VS OPEN LOOP

PMG

Process Module Group

APPLIED MATERIALS

SUMMARY

- Low-k materials have posted significant challenges to the integration and particularly to the etching/patterning of the structures
- Characterization and understanding the nature of various issues are critical for the success in low-k integration
- Combination of Integration Knowledge with Device Characterization
 Capability help reduce Device Qualification cycle time
- Troubleshooting methodology and systematic approach in addressing the issues are crucial to the yield management
- Process control brings great values in minimizing the variability and eliminating excursions

INFORMATION FOR EVERYONE[™]