

Etching of SiLK - an Organic Low-k Material

Cecilia Quinteros, Ph.D.

Helen Zhu

PEUG meeting - April 11, 2002

Outline

- Principles of Etching SiLK
 - SiLK Basic Material Properties
 - Chemistry for SiLK Etching
 - Process Characterization and Trends
- Etch Challenges and Solutions
- Etching Porous SiLK
- Summary

Principles of Etching SiLK

SiLK - Organic, Spin-on, Low-k Dielectric Film. Basic Material Properties

- SiLK: Aromatic Hydrocarbon -- Pure Organic
 - No Fluorine, no Silicon -- C, H, O, ...
- K < 2.65
- Coat and Cure
 - Coating is spin-on. Curing is needed.
 - SiLK J has 3.25% adhesion promoter which contains Si
 - Porous SiLK is based on SiLK I.

Process Step	SiLK I	SiLK J	Porous
Dispense Promoter	Yes	No	Yes
Bake Promoter @ 185C for 60 secs	Yes	No	Yes
Dispense SiLK	Yes	Yes	Yes
Bake SiLK @ 325C for 90 secs	Yes	Yes	Yes
Cure SiLK on hot plate or furnace	Yes	Yes	Yes
Adhesion Promoter	No	Yes	No

Ref. Scott Cummings - Dow Chemical; PEUG March 2001

SiLK Properties: Dielectric Constant and Resistance to Stress

Ref. Scott Cummings - Dow Chemical; PEUG March 2001

SiLK Etch ---- Reaction of SiLK with H₂, O₂, N₂

• SiLK +
$$\mathbf{H}_2$$
 \longrightarrow $\mathbf{C}_2\mathbf{H}_2$, $\mathbf{C}_2\mathbf{H}_4$, * $\mathbf{C}_3\mathbf{H}_2$ +, $\mathbf{H}_2\mathbf{O}$, $\mathbf{O}\mathbf{H}^+$, ...

($\mathbf{C}_x\mathbf{H}_y\mathbf{O}_z$) + \mathbf{O}_2 \longrightarrow \mathbf{CO}_2 , \mathbf{CO} , $\mathbf{H}_2\mathbf{O}$, $\mathbf{O}\mathbf{H}^+$, ...

+ \mathbf{N}_2 \longrightarrow * $\mathbf{C}_3\mathbf{H}_2\mathbf{N}^+$, \mathbf{CO} , \mathbf{NO} , \mathbf{NCO} , \mathbf{NH}^+ .

Graphitized SiLK (*Carbon Skeleton*)

* Polymer Precursors: Large Molecules or Radicals or Ions formed & decomposed, ... yielding less or non-volatile products.

Chemistry for SiLK Etch - SiLK Etch Rate (Blanket)*

Conclusions:

- 1). N₂: More physical etching (compared to H₂)
- 2). H₂: More chemical Etching
- 3). O₂: Chemical and Physical Etching (ER: O₂>N₂>H₂)

^{*} Ref: D.Fuard, et al., J. Vac Sci. & Technology., B19 (2001)447

Process Characterization Plasma Optical Signal Detection during SiLK Etch

N/H Trends - SiLK Via

ER and Uniformity: Wide Process Window for SiLK Etch

Increasing N/H ratio and/or total flow does not strongly influence ER but improves ER uniformity

N/H Trends - SiLK Via

ER and Uniformity: Effect of Generator Power

Higher 27/2 RF power ratio and higher total power increases ER and improves uniformity

Etch Challenges and Solutions

- Single Damascene
- Dual Damascene

- Integration Schemes
- Process Challenges
- Lam Solutions for Integrated SiLK Etch

Dual-HM SiLK Single Damascene Trench Etch

Pre-etch Structure

1. ARC/Mask Open

• CD Bias < 10nm

• No bowing

3. Barrier Open

- Low Facet and Mask Erosion
- No undercut

Dual-Hard Mask SiLK Etch - Trench pattern definition for DD scheme

1. ARC/Oxide

• CD Bias < 10nm

2. PR Strip

• CD Bias < 10nm

- 3. Arc Deposition
- 4. PR Deposition
- 5. Via Lithography

Ready for DD

Dual Hard Mask DD SiLK Etch without Stop Layer

Pre-etch Structure

1. ARC/Via Mask Open

• CD Bias<10nm

2. SiLK Via Etch

No bowing

Dual Hardmask DD SiLK Etch without Stop Layer - continued

3. Trench Mask Open

- •Minimal mask facet
- •No mask undercut

4. SiLK Trench Etch

- •No microtrenching
- •No residues

5. Finish Etch

- •Minimal mask facet
- •No mask undercut

Dual Hardmask DD SiLK Etch Steps with Stop Layer

Pre-etch Structure

1. ARC/Via Mask Open

• CD Bias<10nm

2. SiLK Via Etch

• No bowing

Dual Hardmask DD SiLK Etch Steps with Stop Layer

-continued

- 3. Trench Mask Etch
- 4. SiLK Trench Etch

5. Finish Etch

•No mask undercut

- No microtrenching
- •No residues

- •Minimal mask facet
- •No mask undercut

Other possible SiLK DD Integration Schemes:

Self Aligned

Trench First Via Last

Via First Trench Last

Etching Challenges and Solutions

CD/Profile control

- Pressure -- change in process regime
- Pressure -- Neutral/ion ratio
- Temperature -- sticking coefficient
- Additives -- Polymer precursors

High T

Optimized: Vertical profile with good CD and facet control

Microtrenching

- Bias power
- **Pressure**
- **Temperature**
- Polymer addition

Low **Pressure**

Low T

High CHxFy & high **Pressure**

Optimized:

Vertical profile with no bowing, no residue, and no microtrenching.

Etching Challenges and Solutions:

Facet: Via CD:

Knobs: Knobs:

2 MHz Power (W)

ESC Temperature

 $500 \mathrm{W} (2 \mathrm{MHz}) / 40 \mathrm{°C}$

2 MHz Power (W)

ESC Temperature

 $0 \text{ W } (2 \text{ MHz})/0 \,^{\circ}\text{C}$

500 W (2 MHz)/40 °C

Dual HM SiLK Etch

Etch Performance

- Vertical profile
- Minimum HM facet
- Residue-free
- No under cut, no bow
- Flat and smooth trench etch front
- No residue/ grass/ pitting, no microtrenching
- Etch rate
- Good profile (No bowing)
- Maintain critical dimensions (CD)...

Etching of Porous SiLK

Porous Low-k Etch Integration: Similar Integration Schemes as Non-Porous Materials

Dense and Porous SiLK Etch - SD Via Comparison

SiLK

Porous SiLK

- Similar results obtained using the same process
- 10 to 30% higher etch rate for porous SiLK

Single Damascene processing with porous materials

Etch front roughness is eliminated when encountering a stop layer

Etch Front Progression

Etch rate Comparison

	SiLK ER (A/min)	OSG ER (A/min)
Non-Porous	2250	2437
Porous	2970	3286
ER Ratio	1.32	1.35

• Porous low-k etch rates are typically 20-30% higher than the non-porous film

Dense and Porous DD SiLK Etch - Comparison

SiLK

Porous SiLK

- Dense and Porous SiLK: similar etch behavior: Etch Process recipe can be easily transferred from dense SiLK
- Higher Etch Rates for porous material
- Similar Integration
- For porous SiLK, rough etch front might require stop layer

Dense and Porous SiLK Etch - Summary

- Optimized SiLK etch process for Single and Dual Damascene applications have been developed on Lam Research dielectric etch systems, down to 130 nm feature CD.
- Different chemistries (reducing or oxidizing) can be used to etch SiLK.
- SiLK profile and microtrenching can be improved by gas additives and/or optimizing pressure, ESC temperature, and RF power.
- Responses such as HM facet, bowing and CD can be finely controlled using gas flows, 27 MHz power, 2 MHz power and pressure as factors. Process factors with the greatest effect on process performance vary with feature dimension.
- Dense and Porous SiLK etching display similar process trends, making processes transferable from dense to porous SiLK with ease. An porous SiLK DD integrated scheme has been demonstrated

Acknowledgements

- Contributions for this presentation by:
 - Howard Dang
 - Seokmin Yun
 - Tom Choi
 - Charlie Chu
 - Hyun Ho Doh

are gratefully acknowledged

