Sidewall Passivation Mechanism of CH_xF_y Added Polysilicon Gate Etch Processes

Th. Lill, F. Ameri, S. Deshmukh, Songlin Xu, D. Podlesnik, J. Holland Applied Materials, Silicon Etch Division, Santa Clara, USA

> L. Vallier, O. Joubert CNRS/LTM, Grenoble, France

PEUG Meeting Sunnyvale, January 2002

Conductor Etch Organization

Key Factors for Control of Critical Dimensions

Conductor Etch Organization

Outline

- Evidence for carbon formation with HBr / CF₄ gas mixture
- XPS data for CF₄ containing gate etch processes
- Line width evolution for CF₄ free and CF₄ added processes
- Model for sidewall passivation mechanism
- Dual gate etching behavior for CF₄ added gate processes

Possible designs of selfcleaning gate processes

Wall deposition / SiO₂ removal vs. CF₄ concentration

Measured with QCM / coupon technique. (4 mTorr / total flow 200 sccm / $W_s/W_b = 5$:1)

CF₄ added gate chemistry is cleaning walls for sufficiently high flows.

P. Nallan

Conductor Etch Organization

Experimental evidence for the existence of carbon based polymer deposition

HBr/CF4=4:1; CF4/O2=8:1, 8 sccm HeO2; 25 sccm CF4; 40 % Cl2, 4 mTorr; Ws/Wb=10:1; 1h

Comparison of Polymer Decomposition Spectrum with CO₂ Emission Spectrum

Wavelength (nm)

Formation: 100sccm(HBr+CF₄), 6mTorr, 600Ws Detection: 100O₂, 6mTorr, 600Ws CO₂ plasma and O₂ decomposition spectrum for polymer covered wall show similar signature - indication that polymer is carbon based.

Conductor Etch Organization

Chamber wall polymer composition vs. HBr / CF₄ ratio

For comparison: Chamber wall polymer created by CH_2F_2 plasma.

Etch Products Business Group

Conductor Etch Organization

Correlation between Polymer thickness and composition

Deposition: 100sccm(HBr+CF₄), 6mTorr, 600Ws, 0Wb, blank oxide wafer Removal: 100O₂, 6mTorr, 600Ws Polymer contains more fluorine when CF₄ flow is increased. Max. thickness for 20 to 30 % CF₄.

Conductor Etch Organization

C formation and removal for HBr / CI_2 / CF_4 / HeO₂ process

Basic reaction:

 $CF_4 \longrightarrow CF_x + F$ HBr \rightarrow H + Br Consecutive reaction: $H + F \longrightarrow HF$ $nCF_{v} \rightarrow C,F$ polymer C,F polymer + F \rightarrow mC_vF_z Competing reaction: C,F polymer + $O_2 \leftarrow CO_2 + F$

APPLIED MATERIALS*

Conductor Etch Organization

Experimental data for poly-Si etch variation - HBr / Cl₂ / HeO₂ chemistry -

Strong CD microloading when CD bias gain is targeted.

Conductor Etch Organization

Experimental data for poly-Si etch variation - HBr / Cl₂ / CF₄ / HeO₂ chemistry -

Conclusion:

Even for very large CD gains of the dense line, the CD μ -loading is excellent - between -20 and 20 nm (nominal line width 300 nm).

Experimental data for poly-Si etch variation - HBr / Cl₂ / CF₄ / HeO₂ chemistry -

Conductor Etch Organization

Experimental data for poly-Si etch variation -*HBr* / CI_2 / CF_4 / HeO_2 chemistry – Very high CF4 flow

Source / bias power: 5 to 9 CF_4 / O_2 3 to 6 25 % CF_4 (vs. 12 % standard).

Again, very low CD microloading observed. In contrast to the other examples, negative CD bias has been measured (excessive fluorine).

Simplified microloading mechanisms Traditional vs. CF₄ added chemistry

Traditional chemistry - Passivation by backsputtering-

Sensitive to ARDE

Influence of CF4 addition on sidewall passivation layer formation

- XPS analysis on resist mask wafers -

The SiO_XCl_Y based passivation film is transformed into a CF_xCl_Y based passivation film when CF_4 is added to the standard HBr/Cl₂/O₂ chemistry.

Sidewall passivation as function of CF_4 / O_2 ratio

- XPS analysis on resist mask wafers -

Carbon concentration in sidewall layer increases and overall thickness increases as O_2 concentration in feed gas is reduced.

Behavior of CF₄ containing sidewall passivation during softlanding step

- XPS analysis on resist mask wafers -

HBr / Cl_2 / CF_4 / O_2 main etch HBr / Cl_2 / O_2 softlanding

CF based polymer is consumed during O_2 rich softlanding step. SiOx based polymer is formed instead.

Conductor Etch Organization

Behavior of CF_4 containing sidewall passivation during softlanding step vs. CF_4/O_2 ratio in main etch

Heavily n-doped, not annealed wafer. Etched with CF4 added main etch, softlanding, overetch.

Chamber wall polymer thickness analysis studied with decomposition spectroscopy.

Deposition: 60HBr+40(CF₄+O₂), 6mTorr, 600Ws, 0Wb, blank oxide wafer **Removal:** 100O₂, 6mTorr, 600Ws

Conductor Etch Organization

Doped/undoped selectivities for F free, CF₄ added and NF₃ added processes

No effect observed for NF3 addition. This could point to carbon inhibitors rather than fluorine effect as mechanism for lowered doping sensitivity (not confirmed by XPS).

Open triangles: Full circles: Open circles: baseline CF4 addition NF3 addition

Conductor Etch Organization

Summary

 CF_4 addition to traditionally HBr / CI_2 / O_2 based poly gate etch chemistries has been shown to:

- reduce or eliminate the amount of polymer formation in the reactor (selfcleaning concept)
- improve the dense / iso CD bias difference due to a change in sidewall composition (deposition mechanism)
- reduce doped / undoped etch rate and CD bias differences

CD microloading of < 5 nm, doped / undoped CD differences of < 5 nm, and CD bias uniformities of < 7 nm range across the wafer have been obtained on 300 mm wafers with this chemistry.

