

Sub 0.1um Gate Etch Challenges for Memory Applications

Tito Chowdhury, Kiyoko Ikeuchi Cypress Semiconductor R&D

Advanced Technology

Outline

- New Gate Oxide
 - Why?
- New Gate Stack
 - Why?
 - Options
 - Etch requirements
 - Current Performance on preferred Option
 - Challenges
- Other Risks

Advanced Technology CYPRESS Advanced Gate dielectric

Challenge

- 13 and 18 A EOT
- $1 \sigma < 1.5 \%$ at 13 A and 18 A
- Device to perform at 1.32 Volts Max.
- Leakage of 1E-4 at EOT of 13 A
- Block boron from P+ poly silicon
- No negative impact on mobility compared to exisiting technology.
- TDDB
- Dit < 1E11</p>
- Problems with current Furnace Oxide
- Cannot scale below 16.78 A (optical) which is around 22 A EOT
- Can optimize for boron blocking and mobility within very narrow window..
- Solution

•Nitridated Gate Oxide < 20 A

Big Challenge for Etch , Cleans and metrology!!

GATE Roadmap

• Requirements:

- N+, P+ type gate to optimize NMOS & PMOS performances
- Low resistivity material
- Minimized depletion on N/PMOS transistor
- Compatible with SAC. Need SAC for Cell size.

• Options:

- N+/P+ Poly /Wsix : Rs too high (25 Ω /) and process too complex
- N+ and P+ type metal gate : too early ; definition phase
- N+/P+ Poly / Barrier/Metal gate
- Logic process N+/P+ Poly / CoSi2 is the simplest approach but incompatible with SAC

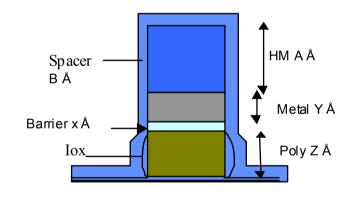
Proposed Roadmap:

- N+/P+ Poly / Barrier/Metal gate

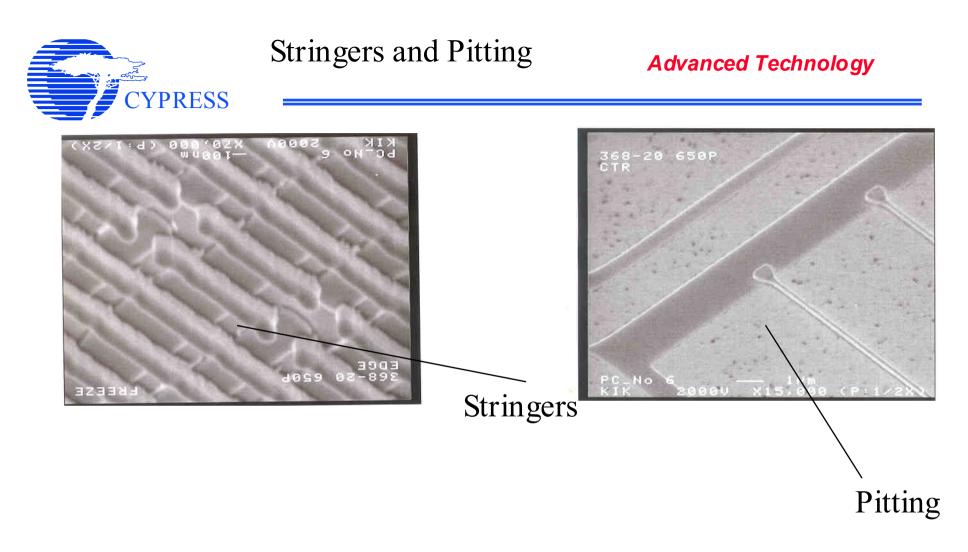
Poly/Barrier/Metal GATE

• Scope of Work

- To develop Dual Poly/ Barrier/ Metal /Hard mask Gate stack based on previous Wsix process.


- Hypothesis
 - Replacing WSix by Metal will give Gate Rs = 5 ohm/[]
 - No dopant diffusion through metal strap with barrier
- Steps
 - Metal deposition : CVD /PVD
 - Barrier Layer: reactive sputtering
 - Hardmask gate capping (Compatible with Metal Gate)
 - Gate stack etch
 - New cleans compatible with Metal Gate

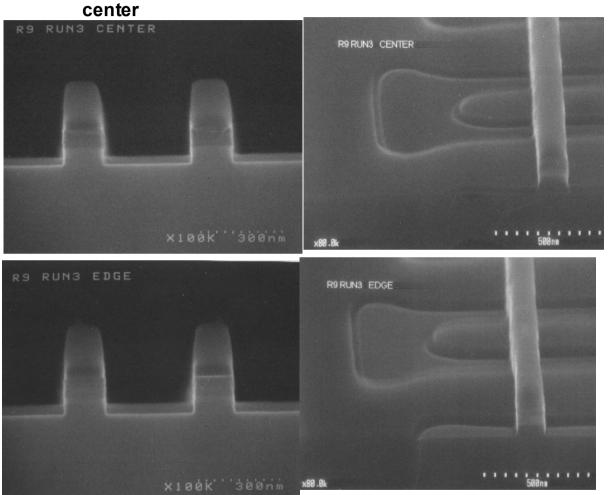
Poly/Barrier/Metal GATE


• Requirements:

Physical cross-section

193 nm PR for 0.1 um CD.

- HM:PR Sel > 2-3:1
- Metal: HM Sel > 3-4:1
- Metal:PR >2:1
- •Metal: Poly >3:1 since Poly is Thin
- •Endpoint for OX <20 A
- •CD Range within wafer <7 nm
- •Iso -Dense < 5 nm
- •Gate Trimming upto 20 nm



• Stringers and Pitting on same wafer with SF6/N2 Metal Gate.

Rev 1 with 248 nm PR

Advanced Technology

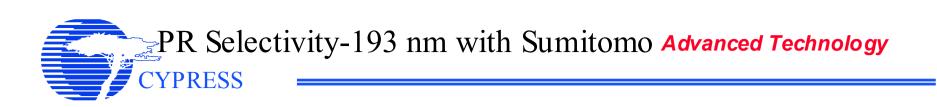
edge

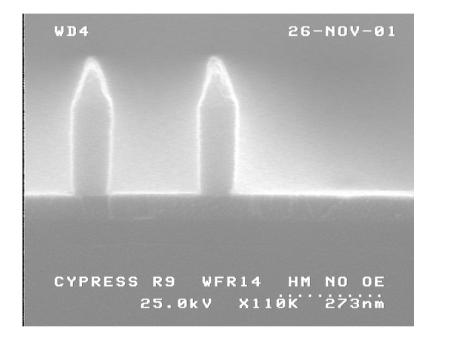
Dist	FICCD	FI MOD	FI ISO
78.74839226	0.1643	0.1581	0.168
92.23617874	0.1731	0.172	0.1854
58.83407919	0.1685	0.1571	0.167
78.90923136	0.167	0.1549	0.1776
40.83137744	0.1698	0.1611	0.1704
43.27996605	0.1701	0.1572	0.1803
13.56461817	0.1686	0.1623	0.1723
42.86483932	0.1627	0.1559	0.1755
59.47856754	0.1732	0.1537	0.1858
13.44716108	0.1693	0.1618	0.1815
75.5255594	0.1639	0.1546	0.171
32.65008449	0.1697	0.1618	0.1774
58.57713244	0.1696	0.1621	0.1607
58.39369838	0.167	0.1637	0.166
94.46089853	0.1702	0.1599	0.1752
84.92485632	0.1666	0.1572	0.1661
Average	0.16835	0.159588	0.173763
Range	0.0105	0.0183	0.0251
3*ST DE V	0.008963	0.013676	0.021985

What This Means:

□ISO Range needs improvement

□ Over 800 A of HM loss during Metal Gate etch

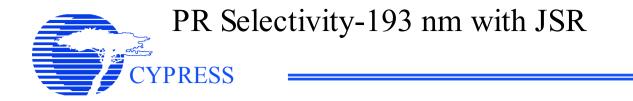


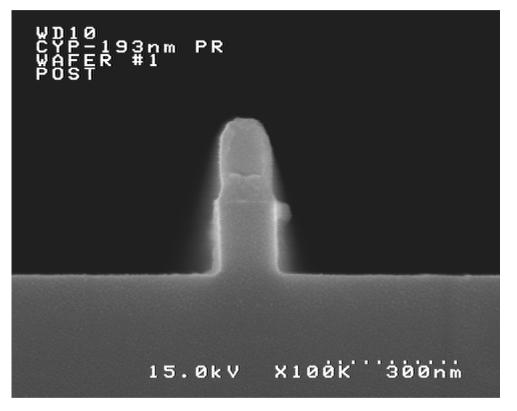

N+/P+ Profile Differences Advanced Technology

	-40 nm Etch bias	
Center TOP	Post CCD bias Pre	Post ISO bias
	0.1266 -0.04	
VD5 VD5	0.134 -0.0377	
	0.1274 -0.0352	
	0.1261 -0.0405	0.1289 -0.0238
P+	0.1309 -0.0258	0.1161 -0.0318
	0.1272 -0.0359	0.1115 -0.0305
	0.1262 -0.0366 0.1269 -0.037	0.111 -0.0352 0.1188 -0.0339
	0.1332 -0.0288	0.1101 -0.0391
	0.1277 -0.0285	0.12 -0.0279
	0.1194 -0.0438	0.1142 -0.0405
CR9-17BCENTERCR9-17BTOP	0.1279 -0.0317	0.1166 -0.0281
15.0kV X100K 300nm 15.0kV X100K 300nm	0.1327 -0.0314	0.1192 -0.0313
	0.1209 -0.0454	0.1179 -0.0375
	0.1313 -0.033	0.1197 -0.0491
WD5	0.1271 -0.0373	0.1095 -0.0445
WD4	0.127844 -0.03554 Average	0.116423 -0.03486 Average
	0.0146 0.0196 Range	0.0194 0.0253 Range
N+	0.012008 0.016421 3* STDEV	0.016001 0.021407 3* STDEV
	CD bias vs	5. Distance
CR9-17B_ CENTER 15.0kv X90.0k ^{···} 333nm 15.0kv X100k ^{···} 300nm What This means:	-0.01 • • • • • • • • • •	CCD bias ISO bias

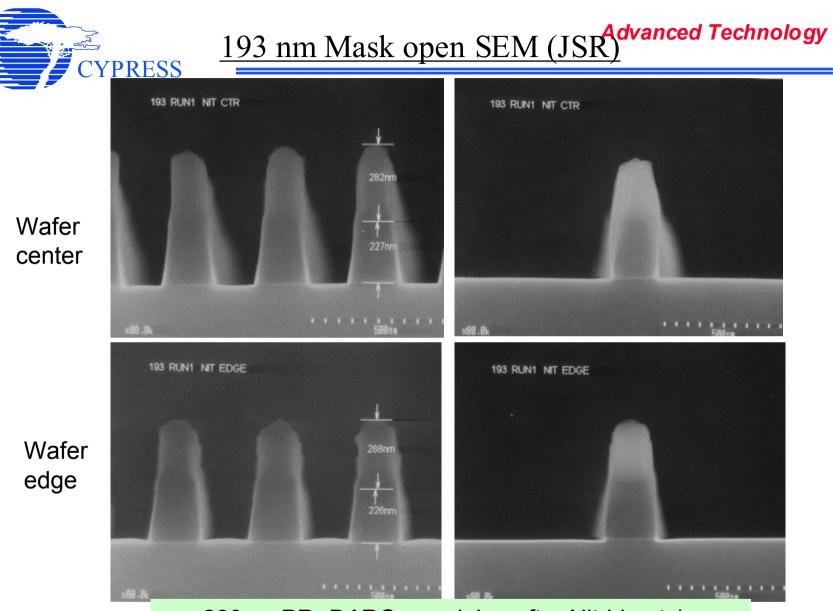
<u>VVNAT THIS MEANS:</u>
Edge CD bias larger for R9 as well.
R9 also has poor iso CD Range issue

Distance from Center of Wafer



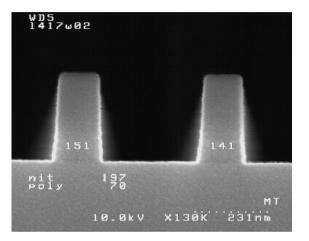


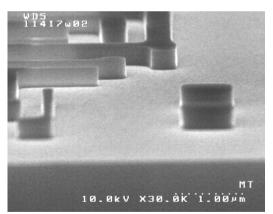
PR+BARC≈1080Å

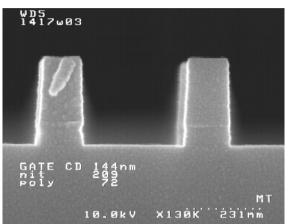

 $SiN:PR \approx 1.25:1$ at the top $\approx 1:1$ at the facet

Advanced Technology

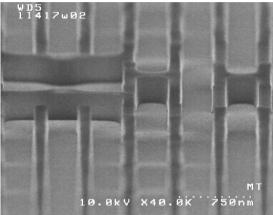
<u>SEM Image - CF4 BARC Open + CF4/CHF3 SiN Main Etch</u> <u>Selectivity ~ 1.5:1</u>

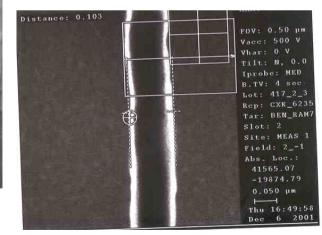

280nm PR+BARC remaining after Nitride etch.




0.1 Poly Gate with Trimming Advanced Technology

MT


DICD = 0.175 um



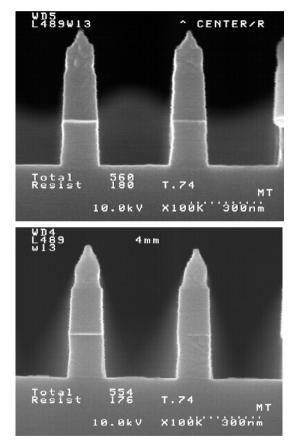
10.0kV X40.0K 250nm

Field 2 (Exp= 32 mJ) = FICD 0.135 um as per Verasem MOD 111 = 0.105 um

WD6 11417w03

Hypothesis

Lower ARC BP and more O2 in ARC etch encourages more isotropic etch, trimming lines

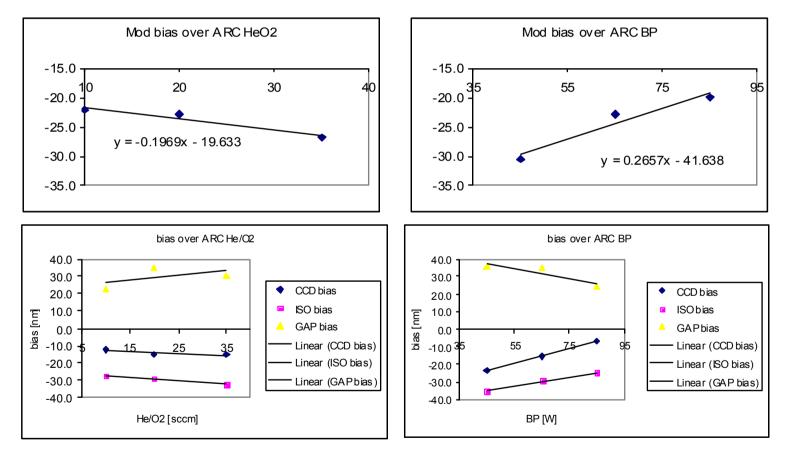

Experiments

Monitor CD bias for all features over various ARC BP and HeO2 flow. Check for the resist budget. Wafers with R7 process flow were used.

Results

- •35nm bias with trimming achieved •no change in CD uniformity seen
- 248 nm Resist budget issues!!
 •trimming >35nm requires trimming in HM step as well

(65BP,20HeO2) post etch (-23nm mod bias)


Resist remaining on shoulder ~850A

Gate Etch Line Trimming

Results - CD Performance

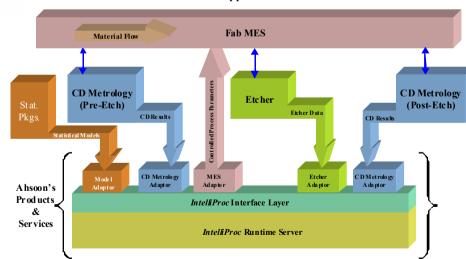
- CD trimming with ARC BP and ARC He/O2 is possible (>-35nm MOD141).

- Risks
 - New Cleans need to be developed. H2O2 attacks Metal gate. Alternative solutions being looked at.
 - Current Alignment strategy may not work due to signal strength, reflectivity etc. Alternative solutions being looked at.
 - HM Film peeling/ new ReOX process etc.
 Solutions being worked on.

TRANSFORMA PATTERNING SYSTEM

Enables Improved CD Control:

 Allows compensation of incoming resist variation delivering higher speed devices without yield loss due to high leakage current.

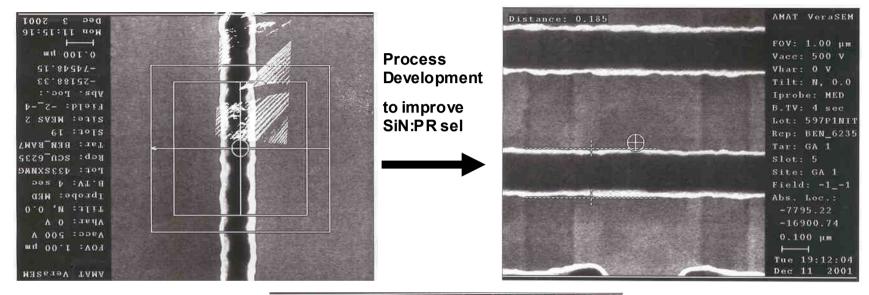

Transforma Combines:

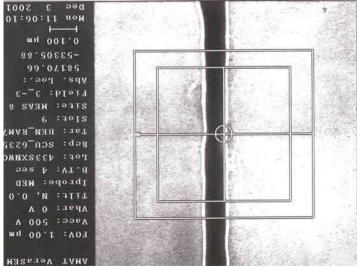
- Sub 100nm capable DPS II Silicon Etch chamber (300 / 200mm capable).
- Centura 300 mainframe with Applied standard Factory Interface.
- Integrated Optical CD Metrology.

Onboard Metrology:

 Provides real time non destructive measurement of critical dimension and profile of patterned lines. There is a need for APC for better L2L and W2W
CD control, not necessarily new metrology tools

Intell iProc Product Concept




CD Control for Etch Application Model

Line Edge Roughness

Advanced Technology

What This means:

 Line edge roughness can be reduced by choosing higher SiN:PR sel process.
 New metrology methods being standardized for quantifying LER which may be an issue for 193 nm and its impact on device parameters

Acknowledgements

- Benjamin Schwartz, Sundar Narayan, Chan-lon Yang, Alain Blosse, Wade Xiong, Sam Geha, Shahin Sharifzadeh and K. Ramkumar Cypress Semiconductors R&D, San Jose
- My Thang, Roque Alvarez (Cypress) for analytical support.
- Applied Materials
- Lam Research