Tapered Trenches for Microelectromechanical Systems

AKT/Applied Materials MEMS Product Group

June 13, 2002

Michael Rattner Buddy Cooper Rolf Guenther Jeff Chinn

Michael Rattner

MEMS Group

Envisioning

Preview

- *Introduction
- *DPS Deep Trench Chamber
- *Why tapered trenches?
- *Other approaches
- *Our method
- *Sidewall smoothing

MEMS Group

*Conclusion

Envisioning the Future

Introduction

What is AKT Inc. and what do we have to do with MEMS?

- * Fully owned subsidiary of Applied Materials
- *Opto-MEMS group goals:

MEMS Group

Envisioning

- To modify Applied Materials' existing product line to serve the MEMS and optical markets
- To create new products that specifically serve the MEMS community

Opto/MEMS OM-1 Platform under construction

= @]<mark>_A K T</mark>—

The DPS Deep Trench System

* Decoupled Plasma Source Reactive Ion Etch

*2 base chemistries

- C_4F_8/SF_6 cyclic etch
- $SF_6/HBr/O_2$ single step etch
- * Process kits for 4", 6", and 8" as well as arbitrary wafer and die sizes and through wafer etches

*Single chamber or multi chamber

Envisioning

Applications Requiring Tapered Trenches

*Optical Fiber Alignment

- In plane
- Perpendicular
- * Microfluidics

Envisioning the Future

- Plastic micromolding
- *Metal Electroforming

KOH Etching

*Benefits

- Large angle (54.7 degrees)
- * Problems

Envisioning

- Wet etch
- Wafer orientation dependent
- Fixed angle

SF₆/C₄F₈ Etch, High Deposition

*Benefits

- Fine control of etch angle
- Dry etch
- Orientation independent
- Manufacturability
- * Problems

Envisioning

- Max angle 87.5°

MEMS Group

- Scalloping
- Grass in high open area regions

SF₆/C₄F₈ Etch, Undercut Method

*Benefits

- Fine control of etch angle
- Dry etch
- Orientation independent
- Manufacturability
- Angle variable up to 88°
- Minimal sidewall roughness
- High etch rates (>4 im/min, often >7 im/min)
- *Problems

Envisioning

- Rounding of corner at top of trench difficult to control

SF₆/C₄F₈ Etch, Undercut Method Pressure Dependence

Low Pressure

Etch Rate: 4.2 im/min Profile: 88°

> Envisioning the Future

Medium Pressure

Etch Rate: 7 im/min Profile: 75°

High Pressure

Etch Rate: 7.4 im/min Profile: 70°

Trench Filled with Polymer

Tapered Trench Filled with Polymer

Envisioning

Plasma Etch Users Group

Conclusion

*Trenches with taper angles from 90° to 65° have been achieved (of course reentrant trenches are possible as well)

*Higher etch pressures yield a larger taper when using the undercut method

*A smoothing process has been demonstrated

Envisioning

