How to Make Manufacturing of LEDs Truly GREEN

Prasad N. Gadgil & Peter Dusza

Atomic Precision Systems Inc. Santa Clara, CA

NCCAVS, Feb 21st 2019, San Jose, CA

Atomic Precision

Overview

- Progression in Lighting Sources
- Typical HBLED Device Structure
- Current HBLED Manufacturing Process
- Precursors TMG & Ammonia
- Ammonia in LED Manufacturing
- Issues: Ammonia Production & Purification
- Atomic Precision's Solutions
- Novel Reactor
- Alternative to Ammonia

Lighting Sources

5W, 20Yrs, \$15

15W, 3Yrs, \$3.0

60W, 1.5 Yrs, \$1.0

Atomic Precision

HBLEDs - Current Applications

HBLED Device Structure

Device Layers

- Buffer GaN (4 to 6 μ)
- n-GaN & p-GaN (2 μ)
- InGaN: In & Ga % varies
- MQW: Quantum Wells
- Total stack: 8 10 μ

Current MOCVD Tool Configurations

Vendor - A • Turbo-Disk; MO + Hydride • 3-inch x 24 Wafer Capacity

Vendor - B

- Planetary Motion of Wafer
- 3-inch 24 Wafers
- Compact Design

NCCAVS, Feb 21st 2019, San Jose, CA

Atomic Precision

MOCVD: Current Thin Film Process $Ga(CH_3)_3 + NH_3 \rightarrow GaN + 3 CH_4$ ✓ Process Temp. = 900 - 1,000 °C ✓ Chamber Pressure = x 100 mT Deposition Rate ~ 2 micron/h. Rigorous "O" Exclusion Required ✓ H₂ Added to Gas Mixture \checkmark GaN + H₂ \leftrightarrow Ga + NH₃ Ammonia added to "Reverse" GaN decomposition Typical Ammonia Flow Rate ~ 50 slpm ✓ Typical "Batch" Process Time ~ 5 h.

Volume of Ammonia Required

= 0.6 x 50 slpm x 60 min/h x 24 h/day x 365 days/year

= 15,768,000 Liters/year/Tool@ 60% Tool Uptime!

Hundreds of Tools Worldwide!

NCCAVS, Feb 21st 2019, San Jose, CA

Industrial Ammonia Production

A Flow Scheme of Haber Process

Energy consumed in N₂ separation and H₂ generation

HBLED Mfg: Required Ammonia Purity

Spec Gas Supplier	Total Purity %	H2O ppb	O2 ppb	CO ppb	CO2 ppb	Total ppb oxygen compounds
White Grade	99.99999	1	10	10	50	71
В	99.99999	60	30	30	50	150
С	99.99997	5	50	30	50	135
D	99.99995	100	50	50	100	300

Ref.: R. W. Ford, Gases & Instrumentation, pp. 26, May/June 2013.

Ammonia Supply in Manufacturing

Ref. : R. W. Ford, Gases & Instrumentation, pp. 26, May/June 2013.

NCCAVS, Feb 21st 2019, San Jose, CA

Atomic Precision

Issues in Ammonia Supply

- Ammonia is a refrigerant
- During transport cools on expansion
- \succ Couplings, elastomer seals freeze \rightarrow icing
- Couplings, seals loosen when frozen
- Strong possibility for Re-entry of all "O"s
- Must be "Re-purified" before entry into MOCVD
- Additional cost and energy expended

Solutions by Atomic Precision

- Novel High-speed Reactor
- 2. Ammonia Free chemistry
- 3. Substitute for Ga(CH₃)₃

1. Novel High-speed Reactor

- ✓ Linear Injectors w/ Apertures
- ✓ Rapid Uniform Coverage
- ✓ ALD & CVD in One Chamber
- ✓ Thin & Thick Films
- Chemistry Flexibility

Prasad N. Gadgil, US Patent No. 6,812,157

NCCAVS, Feb 21st 2019, San Jose, CA

Atomic Precision

Ammonia FREE Chemistry

Low Volume Linear MW Plasma Applicator

Replace Ga(CH₃)₃ by GaCl₃

	TMG	GaCl ₃
State	Liquid	Solid
m. p. (°C)	- 15.8	78
b.p. (°C)	55.7	201.3
Cost (\$/g)	20*	< 1.0 §

- * and §: Estimated bulk cost
- GaCl₃ can be molten and added via a linear injector

C&F GaN System – Atomic Precision

GaN: n&k Analysis

 $N_2 = 25$ sccm, $H_2 = 75$ sccm, 500 °C, 700 mT, 500 W MW

Advantage – Atomic Precision

HBLED Production Technology - Factors	(MOCVD)	Atomic Precision
Chemical Cost (per g)	10	1x
Chemical Utilization Efficiency	~ 25 %	> 80%
Film Deposition Rate	~ 2 µ/h	~20 μ/h
Undesirable "C" in Film	Yes	No
Process Automation Potential	Marginal	Full
Product Yield	< 60%	N/A
Product Cost	10x	1x

†: Estimated.

- Enabling Equipment & Process Technology
- ✓ HBLED Cost Reduction by approx. 90%
- Environmentally Clean and GREEN Process

Thank You!

