

Next Generation Energy Storage Technologies

Subramanya Herle PhD

Director and DMTS Energy Storage Solutions, Office of the CTO Subra_Herle@amat.com 2019 NCCAVS Symposium, Holiday In<u>n, San Jose</u>

APPLIED MATERIALS OVERVIEW

Subramanya Herle Director of Energy Storage Technologies

2019 NCCAVS Symposium, Holiday Inn, San Jose

OUR VISION

Our innovations **make possible** the technology shaping the future

OUR MISSION

To lead the world with **materials engineering** solutions that enable customers to transform possibilities into reality

FOR THE PAST DECADE, ~\$1Billion invested annually in RD&E

4 External Use

Our Story

FOUNDED in 1967

Applied Materials began in a small industrial unit in Mountain View, California

World's #1

semiconductor and display equipment company

\$17.3 billion revenue

\$2.0 billion **R&D** spending

Headquartered in California's **Silicon Valley**

Data as of fiscal year end, October 28, 2018

Businesses

Semiconductor Systems

Applied Global Services

Display and Adjacent Markets

Accelerating Innovation

Deposition

Metals

Planarization

Inspection

Plating

Implant

Collaborate earlier and deeper with customers on inflections

Extend the technology roadmap with fast cadence in product innovation

Drive materials-enabled scaling to improve PPAC* with new materials, new structures, new devices

Solve customers' complex technical challenges with Integrated Materials Solutions (IMS)

Enable faster learning and breakthrough technologies through the Maydan Technology and META Centers

* PPAC = Power Performance Area Cost

Applied's Display and Flexible Technology Products

More Products in the Pipeline that will Triple our Footprint in Display

Energy Storage Technologies

APPLIED MATERIALS.

Energy Storage Technologies

Commercially Available Battery Technologies

13 External Use

APPLIED MATERIALS.

Battery Energy Density and Ragone Plot

- Cell chemistry and cell design determines Ragone chart
- New cell chemistries needed to increase practical energy density of cells

14 External Use

Si/Li metal anode will enable > 1000 Wh/L battery

15 External Use

Rapidly Falling Costs of xEV Battery Packs

http://www.nature.com/doifinder/10.1038/nclimate2564

Electricity Storage: Mobility, Transportation and Grid Storage

Li-ion Recycling Could Supply Most of Needed Material ... Eventually

Ref: Linda Gains, ARNL, International Battery Seminar and Exhibit 2018

Low cost recycling technology is essential for sustainability

18 External Use

Active Materials

Factors Affecting Battery Design (Li-ion)

Comparison of Anodes

Next Gen Storage Technologies

2017-2025 Available Battery Technologies

Source: AVICENNE Analysis 2018, Inventus Power

Time to Market for New LiB Materials

Source: AVICENNE ENERGY 2016

24 External Use

Energy Storage Solutions

System power and discharge time of energy storage technologies

Source: AVICENNE Energy, 2016

25 External Use

Technical Challenges

Li Dendrite

Ref: Prof. Wittingham, 1980

Ref: Prof. Bazant, 2016

Summary

 Battery Manufacturing Capacity is Growing Fast
 \$ 90 Bn investment announcements by automakers till 2030 for EV Global capacity for energy storage is expected to reach 8.6 GW/ 21.6 GWh by 2022, enough to power to electrify roughly 6 million homes

 Lithium-ion is Becoming the Technology of Choice for Solar-based ESS The prices for Lithium-based batteries are steadily declining by 8% on an annual basis (the average price of batteries has dropped 80% since 2010), making solar + storage projects more investment-friendly.
 Asia is On Track to Become the World Leader in ESS

Alternate energy storage technologies available including fuel cell technologies

- 4. Utilities are Primed to Partner With / Acquire ESS Companies There were four Energy Storage M&A transactions in Q2 2018.
- 5. Government Incentives for Energy Storage are Driving Growth At the federal level, the 30% Investment Tax Credit remains available for energy storage, provided it is coupled with renewable generation
- 6. Energy Storage-as-a-Service (ESaaS) is Becoming a Key Service Model
- 7. Residential ESS Growth is Outstripping Utility-scale Residential installations of battery storage beat commercial installations in Q1 of 2018, 15.9 MW to 11.7 MW (almost beat utility-scale installations at 16 MW)
- 8. Levelized Cost of Storage (LCOS) is Emerging as a Popular Revenue Metric Cost of storing electricity in ESS and divides by the retail price of electricity stored. LCOS has only been in existence for the last 3 years, and this new metric
- will continue to evolve and provide a standard metric of providing better insights to the financiers
- 9. Ethical Sourcing is Increasingly Critical for Battery Materials
- 10. Recycling of battery and materials is critical for sustainability

