Thin Film Fabrication of Quantum Upconverting Sensors for Dark Matter Detection

Dale Li, Ph.D.

SLAC National Accelerator Lab

Technology Innovation—Advanced Instrumentation for Research

daleli@slac.stanford.edu

Dark Matter is Out There!

DM Radio tunes into dark matter waves

- DM Radio is optimized to search for wave-like dark matter: Axions and Hidden Photons
- Below 1 eV wavelengths are very long and the number density is big

 $\lambda_{\rm coherence} \approx 100 \,\mathrm{km} \times (10^{-8} \mathrm{eV}/m)$

- Lumped-Element resonators give us an advantage of an extremely wide tuning range from 1 kHz to 300MHz!
- Quantum Sensors will allow us to probe a swath of the QCD Axion band

Lumped-element approach can tune a huge range

DM Radio will detect or rule-out axions in big area

SLAC

Side View

Top Cutaway

Add a toroidal magnet inside for conversion of axions to photon fields

B₀ toroid Side View inside

Top Cutaway

B₀ dc circulating field

DM Radio is a lumped-element dark matter detector

- Now we have a harmonic oscillator driven by a dark matter signal.
- Since this signal is small, we need to apply quantum techniques to sense it.
- Let's take a moment to look at LIGO for inspiration.

Laser Interferometer Gravitational-Wave Observatory

Two Sites for LIGO

Simplify LIGO to Get the Basic Physics

LIGO Exploits the Interplay Between Two Oscillators

We can borrow the lessons learned from LIGO and apply it to fabricated microwave circuits because the physics is the same!

Microwave Circuits Built with the Same Physics

- Dark matter excites a resonance (kHz MHz) [red circuit]
- Couples to microwave resonator (GHz) [blue circuit]
- Up-conversion happens due to changes in flux through variable inductor ("moveable mirror")

Microwave Circuit Resonator

$$\hat{H}= oldsymbol{\hbar}\omega_a(\hat{a}^\dagger\hat{a}+rac{1}{2})+oldsymbol{\hbar}\omega_b(\hat{b}^\dagger\hat{b}+rac{1}{2})+oldsymbol{\hbar}g\hat{a}^\dagger\hat{a}(\hat{b}^\dagger+\hat{b})$$

LIGO as a Microwave Circuit Model for Dark Matter

Initial Designs for RF Quantum Upconverter

Prototype Fabrication of RQUs

Thin Film Fabrication for RQUs

Fabrication Layers for RQUs with Trilayer Oxidation

Conclusions

- RF Quantum Upconverters are based on the same physics from experiments like LIGO
- Low frequency oscillator (large occupation number state) coupled to a high frequency oscillator (small occupation number state)
- Thin film fabrication requires very clean environments, pure materials, and tight controls on the chemistry and energy of the deposition and etches.

🛾 👫 SLAC 🕻 a

• Stephen's Talk will demonstrate the power of RQUs

HEISING-SIMONS

