Reliability for the 21st Century: Meeting Challenges of New Technologies and New Markets

Milena Vujosevic

Singularity is Near

Smaller Features

High Complexity

Electronics everywhere

How to define qualification criteria to continuously meet customer's Q&R needs when technology is rapidly changing?

Reliability response choices

Standards (Stress) Based Qualification (SBQ)

- Product is "as good" as past products
- "We did the same as the rest of the industry"

Qual requirements

Knowledge Based Qualification (KBQ)

Product engineered for real usage

Qual requirements

"We did what was necessary to protect the customer"

Standards

Accounting for UC

Standards -

Reality

Real Workload

Real Environment

Real User Behavior

Standards not capturing real use conditions

Accounting for Physics

Name	Empirical acceleration model/equation	Primary stress
Coffin- Manson 1950s	$\frac{N_{use}}{N_{test}} = \left(\frac{\Delta T_{use}}{\Delta T_{test}}\right)^{-n}$	ΔT
Norris- Landzberg 1968	$\frac{N_{use}}{N_{test}} = \left(\frac{\Delta T_{use}}{\Delta T_{test}}\right)^{-n} \left(\frac{f_{use}}{f_{test}}\right)^{m} e^{\left[1414\left(\frac{1}{T_{hi,use}} - \frac{1}{T_{hi,stress}}\right)\right]}$	ΔT , $Tmax$,
Peck 1983	$\frac{N_{use}}{N_{test}} = \left(\frac{RH_{use}}{RH_{test}}\right)^{-n} Exp\left(\frac{E_a}{k}\right) \left[\frac{1}{T_{use}} - \frac{1}{T_{test}}\right]$	RH-relative humidity

CHALLENGE

ACCOUNTING FOR SYSTEM BOUNDARY CONDITIONS Ex: FLI qualification

Reliability Risk Assessment vs.

Field Risk

Qual Requirements

Not impacted by brd. thickness

Impacted by board thickness

CHALLENGE

Example: Solder Joint T-M qualification

Solder Joint
(SJ)

Geometry B

Qualification requirement

$$\frac{N_{use}}{N_{test}} = \left(\frac{\Delta T_{use}}{\Delta T_{test}}\right)^{-n} \left(\frac{f_{use}}{f_{test}}\right)^{m} e^{\left[1414\left(\frac{1}{T_{hi.use}} - \frac{1}{T_{hi.stress}}\right)\right]}$$

Requirement (A)=Requirement (B)

Not a function of FF

Use Condition Risk

SJ damage (A) >> SJ damage (B)

A function of FF

CHALLENGE

ACCOUNTING FOR ACTUAL USE CONDITIONS Ex. T-M FLI qual

Use Condition	Empirical Acc. Model	Requirements (N _{stress})	
Assumed	$\frac{N_{use}}{N_{Stress}} = \left(\frac{\Delta T_{use}}{\Delta T_{stress}}\right)^{-n}$	750 TCB	
Measured UC	$\frac{N_{use}}{N_{Stress}} = \left(\frac{\Delta T_{use}}{\Delta T_{stress}}\right)^{-n}$	It depends!! Sampling rate Extreme sensitivity to sampling rate	

Empirical Acc. Equations	Why?		
Do not account for FF (architecture, geometry, materials)	Defined in terms of applied stress, like ΔT Applied stress is often <u>a very remote</u> proxy for damage/failure		
Do not account for system boundary condition	Damage = f (applied stress, FF, system BC, materials)		
Have difficulties accounting for measured UC	Every ΔT (both large and small) is considered to contribute to damage; more UC cycles always results in more damage and higher requirements		

Standards not capturing real physics of failure

How to get closer to damage?

Getting Closer to the Physics

Example: Solder Joint (SJ) qual in temp.cycling (TC)

SJ damage accumulation in 1 TC

SJ Stress vs. strain

Damage (D) New Application of Computational Modeling: Definition of Qualification Requirements

N=?

Time

Approach	Metric	Use Conditions	Acceleration equation
SBQ Standard (stress) based Qualification	Applied stress: (ex:∆T)	Representative user	MTTF vs. ∆T
KBQ Knowledge-based Qualification	PoF metric (ex: ISED)	Field measured users	MTTF vs. ISED

KBQ: Based on the PoF metrics and measured use conditions. Predictive modeling/simulation are necessary to overcome the limitations of empirical reliability models.

KBQ: Realistic Account of use conditions

KBQ: Accounting for FF

Geometry drives requirements

KBQ: Accounting for system BC

With Adhesive **No Adhesive**

Use Condition

Accelerated

- R. Han, M. Vujosevic, M. Pei, 'Physics Based Requirements for Qualification of BGA Components in Temperature Cycling', InterPACK2015, San Francisco, July 2015
- G. Arakere, M. Vujosevic, M. Pei, 'Accessing Adhesive Induced Risk for BGAs in Temperature Cycling', ECTC2014, Florida, May 2014.

Conclusions

The new reliability frontier is knowledge based

Standards must evolve to meet the needs of the 21st century