Reliability for the 21st Century: Meeting Challenges of New Technologies and New Markets

Milena Vujosevic

NCCAVS symposium, February 22, 2018
Smaller Features
High Complexity
Electronics everywhere

New use conditions
How to define qualification criteria to continuously meet customer’s Q&R needs when technology is rapidly changing?
Reliability response choices

Standards (Stress) Based Qualification (SBQ)
- Product is “as good” as past products
- “We did the same as the rest of the industry”

Knowledge Based Qualification (KBQ)
- Product engineered for real usage
- “We did what was necessary to protect the customer”

Qual requirements
Standards
Car Usage

Accounting for UC

Standards → Reality

Real Workload

Real Environment

Real User Behavior

Standards not capturing real use conditions

Prob. Distr. of car trips start times
<table>
<thead>
<tr>
<th>Name</th>
<th>Empirical acceleration model/equation</th>
<th>Primary stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coffin-Manson 1950s</td>
<td>$\frac{N_{use}}{N_{test}} = \left(\frac{\Delta T_{use}}{\Delta T_{test}} \right)^{-n}$</td>
<td>ΔT</td>
</tr>
<tr>
<td>Norris-Landzberg 1968</td>
<td>$\frac{N_{use}}{N_{test}} = \left(\frac{\Delta T_{use}}{\Delta T_{test}} \right)^{-n} \left(\frac{f_{use}}{f_{test}} \right)^{m} e^{\left[\frac{1414}{T_{hi,use}} - \frac{1}{T_{hi,stress}} \right]}$</td>
<td>$\Delta T, T_{max}$,</td>
</tr>
<tr>
<td>Peck 1983</td>
<td>$\frac{N_{use}}{N_{test}} = \left(\frac{RH_{use}}{RH_{test}} \right)^{-n} \text{ Exp} \left(\frac{E_a}{k} \right) \left[\frac{1}{T_{use}} - \frac{1}{T_{test}} \right]$</td>
<td>RH-relative humidity</td>
</tr>
</tbody>
</table>
ACCOUNTING FOR SYSTEM BOUNDARY CONDITIONS

Ex: FLI qualification

Reliability Risk Assessment vs. Field Risk

Qual Requirements

\[N_{use} = N_{stress} \left(\frac{\Delta T_{use}}{\Delta T_{stress}} \right)^{-n} \]

Not impacted by brd. thickness

Use Condition Risk

Impacted by board thickness

Challenge
Accounting for Geometry (FF)

Example: Solder Joint T-M qualification

Geometry A

- Solder Joint (SJ)

Geometry B

Qualification Requirement

\[
N_{use} = \left(\frac{\Delta T_{use}}{\Delta T_{test}} \right)^{-n} \left(\frac{f_{use}}{f_{test}} \right) e^{\left[\frac{1}{4414} \left(\frac{1}{\lambda_{use}} - \frac{1}{\lambda_{test}} \right) \right]}
\]

Use Condition Risk

<table>
<thead>
<tr>
<th>Requirement (A)</th>
<th>Requirement (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not a function of FF</td>
<td>A function of FF</td>
</tr>
</tbody>
</table>

- SJ damage (A) >> SJ damage (B)
ACCOUNTING FOR ACTUAL USE CONDITIONS

Ex. T-M FLI qual

<table>
<thead>
<tr>
<th>Use Condition</th>
<th>Empirical Acc. Model</th>
<th>Requirements (N_{stress})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumed</td>
<td>$\frac{N_{use}}{N_{stress}} = (\frac{\Delta T_{use}}{\Delta T_{stress}})^{-n}$</td>
<td>750 TCB</td>
</tr>
<tr>
<td>Measured UC</td>
<td>$\frac{N_{use}}{N_{stress}} = (\frac{\Delta T_{use}}{\Delta T_{stress}})^{-n}$</td>
<td>It depends!!</td>
</tr>
</tbody>
</table>

It depends!!

Extreme sensitivity to sampling rate!

CHALLENGE
<table>
<thead>
<tr>
<th>Empirical Acc. Equations</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not account for FF (architecture, geometry, materials)</td>
<td>Defined in terms of applied stress, like ΔT</td>
</tr>
<tr>
<td>Do not account for system boundary condition</td>
<td>Applied stress is often a very remote proxy for damage/failure</td>
</tr>
<tr>
<td>Have difficulties accounting for measured UC</td>
<td>$\text{Damage} = f(\text{applied stress, FF, system BC, materials...})$</td>
</tr>
</tbody>
</table>
How to get closer to **damage**?
Example: Solder Joint (SJ) qual in temp.cycling (TC)

Use Conditions

Accelerated Test

Temp. Use Conditions

Damage (D)

Test Condition

N=?

New Application of Computational Modeling: Definition of Qualification Requirements

M. Pei, et. al, “Define Electrical Packing Temperature Cycling Requirement with Field Measured User Behavior Data”, ECTC 2013, PP159-65

<table>
<thead>
<tr>
<th>Approach</th>
<th>Metric</th>
<th>Use Conditions</th>
<th>Acceleration equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBQ</td>
<td>Applied stress: ΔT</td>
<td>Representative user</td>
<td>MTTF vs. ΔT</td>
</tr>
<tr>
<td>KBQ</td>
<td>PoF metric (ex: ISED)</td>
<td>Field measured users</td>
<td>MTTF vs. ISED</td>
</tr>
</tbody>
</table>

KBQ: Based on the PoF metrics and measured use conditions. Predictive modeling/simulation are necessary to overcome the limitations of empirical reliability models.
KBQ: Realistic Account of use conditions

M. Pei, M. Vujosevic, S. Mukherjee, “Knowledge Based Requirement Calculation for Server BGAs Temperature Cycling (TC) Qualification”, ASME InterPACK2017, San Francisco, CA August 29-Sept 1, 2017
<table>
<thead>
<tr>
<th>FF</th>
<th>SBQ UC: 5cycles/day</th>
<th>KBQ UC: measured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1135 TCT</td>
<td>375 TCT</td>
</tr>
<tr>
<td></td>
<td>1135 TCT</td>
<td>95 TCT</td>
</tr>
<tr>
<td></td>
<td>1135 TCT</td>
<td>210 TCT</td>
</tr>
</tbody>
</table>

Geometry drives requirements
KBQ: Accounting for system BC

Adhesive properties drive requirements

Conclusions
The new reliability frontier is knowledge based

Standards must evolve to meet the needs of the 21st century