

NCCAVS

22nd February 2018

A quantitative approach to Optical Emission Spectroscopy (OES) monitoring of vacuum processing conditions over a wide pressure range and aggressive environments

Frank Papa, Joe Brindley, Benoit Daniel, Victor Bellido-Gonzalez

Gencoa USA, Medina, OH

Gencoa Limited, Liverpool, UK

© Gencoa Ltd 2018

Introduction

- Motivation for the remote plasma emission sensing technique
- Sensitivity of the technique
- Field trials of the sensing technique
- Quantification of the readings
- Conclusions

Motivation for the sensing technique

Typical vacuum deposition and surface treatment pressure ranges

Overview of the sensing technique

Remote Plasma Emission Spectroscopy

 Original concept used by Mann in 1981(!) for leak detection Spectrum analysis gives species composition

GENCOA

Plasma generation principle

0

- Fast feedback control of the current allows for a stable plasma to be generated from 1E-6 mbar to 1 mbar
- Overall species excitation is determined by the current setpoint.
- The total pressure reading can be inferred from the voltage feedback

Sensitivity of RPEM

- Nitrogen (391.4 nm) was recorded and the change in signal level when the leak was opened and closed was observed.
- PPM levels were progressively reduced in order to find the PPM detection limit by increasing the argon flow

531 PPM

Sensitivity of RPEM

The change in signal level below 50 PPM was greater than the noise floor average, therefore 50 ٠ PPM can be said to be the detection limit

53 PPM

Sensitivity of RPEM

• The PPM limit at lower pressures may actually be significantly lower due to increased sensitivity at lower pressures.

Projected PPM limit

Case study 1 – Outgassing measurement during carbon coating process

Courtesy of CERN Vacuum Surfaces and Coatings Group

- Carbon sputtered coating
- Deposited on particle accelerator inner surface to reduce secondary electron yield
- Deposition pressure of **1.1E-1 mbar**
- Performance of coating is sensitive to the presence of H outgassing from the magnetron
- Objective to monitor H outgassing during the deposition

Case study 1 – Outgassing measurement during carbon coating process

Hydrogen - 656 nm, 2 AMU

Case study 1 – Outgassing measurement during carbon coating process

Water vapour - 309.6 nm (OH), 18 AMU

- Roll-to-roll deposition of reactively sputtered AIOx onto 125µm PET
- Optix sensor teed with a differentially pumped RGA

Courtesy of Emerson and Renwick

Target cleaning

- Very large H outgassing taking significant time to reach steady state
- Other species also observed initially outgassing OH, CO2, O ٠
- Subsequent power increases cause increased H outgassing and additional settling time
- Consumption of N2 also observed small chamber leak

Reactive sputter characterisation

G

GENCOA

- There a discrepancies between 675 nm (Ar) and amu 40 (Ar)
- Gradually increasing RGA signal is spurious as Ar flow is constant
- Variations in the Optix Ar signal are due to interaction with the O2 process gas

- 656 nm (H) and amu 1 (H) are generally a good match.
- The difference at the start of the trace can be attributed to water vapour disassociating inside the Optix sensor into H, increasing the H reading.

Deposition of NbN via PEALD

High Energy Accelerator Research Organization (KEK), Tsukuba, Japan

Image and data courtesy of S. Kato

• Detection of TrisNb via CH, N and H

• Detection of NH3 via N and H

NbN deposition cycle

NbN deposition cycle

NbN deposition cycle

- Sensor is robust of the full 2+ day deposition cycle

GENCOA

NbN deposition cycle

• Sensor is robust of the full 2+ day deposition cycle

Quantification - Pressure limitations

- Higher currents give a superior signal to noise ratio but at the expense of upper operating pressure limit.
- Maximum linear operating range can be achieved with a lower current setpoint

Quantification - Power correction

 A correction factor based on the measured power can be applied to the emission to remove this effect

• The power delivered to the plasma generator will modify the emission intensities

• The effect of the correction can be clearly seen when compared with a differentially pumped RGA

Experimental setup

- The most significant challenge for quantification of the sensor readings is the interactivity of gases
- Without correction the readings are **relative** not absolute
- i.e. increasing partial pressure of one gas will lead to a reduction in the readings of other gases.
- An experimental setup was constructed to investigate this effect

Diff. pumped side

High pressure side

- Ar, N2, and O2 were mixed in varying quantities
- Total pressure variation was from 1E-5 to 2E-2 mbar on the high pressure side
- Differentially pumped side was kept below 1E-4 mbar

Gas interaction effects can be clearly seen on the OPTIX readings

- An algorithm can be used to correct for the interaction effects
- Partial pressures can then be derived

Ar partial pressure readings compared between RGA and OPTIX

- Enhanced sensitivity to condensable species over a differentially pumped RGA
- Robustness demonstrated with contaminating processes
- Quantitative data can be obtained over wide pressure ranges and gas mixtures

Thank you for your attention!

Please visit us at the exhibition

