

Can a new materials innovation in thin film optical applications be faster and cheaper?

Dr. Guowen Ding

Labforinvention

Contents

- Introduction:
 - New materials innovation is important for optical applications
 - Materials development is complex and time consuming
- How to enhance the materials research?
 - Current technologies for materials research
 - What can further enhance innovation?
- Case studies
- Summary

New materials innovation is important for optical applications

- Cell phone glass coating:
 - Anti-finger print
 - Anti-reflection, anti-glare
 - Anti-scratch

- Wearable display products
- Solar panels

Materials development is complex and time consuming

- Materials development is time consuming
 - It could be 10-20 years from lab discovery to first practical use
- Lab materials screening is complex and time consuming

Example of time frame for bring new materials to market

**ACS Comb. Sci. 2011, 13, 579–633

Labforinvention.com

What can we do?

 Moore's law predicts faster, cheaper, more powerful solutions in the future

Moore's law

Figure 3. Average price of a transistor (1968-2004). Source: Intel/WSTS, May 2005.

Current Technologies for Materials Research

Combinatorial is a common technology for materials research

Combinatorial insights into doping control and transport properties of zinc tin nitride

J. Mater. Chem. C, 2015,**3**, 11017-11028

Labforinvention.com

www.win.tue.nl/~adibucch/2DS01/2D S01lec5.ppt Statistics 2 for Chemical Engineering. lecture 5.

What can further enhance materials innovation?

- "The more brains, the better"
- How can attract more brains (more people) on innovation?
- Can materials innovations be accessible, affordable, and open to more brains (more people)?
- Reducing the threshold on the innovation is a way to attract more brains,
 - Hardware
 - Software
 - Knowledge barrier

cims.ncsu.edu/the-more-brains-the-better/

Can research project threshold be significantly reduced?

- Traditional research project needs
 - PhD lead
 - Millions \$ findings
 - Well prepared plan, and complicated funding application procedures
- Could new optical coating prototypes, publications for a project cost at
 - 100 time cheaper?
 - 10-100 time faster?
 - At \$10,000 scale?
- Don't need ten year training as a PhD?

Affordable equipment (Moore's law)

- Ten Million \$ equipment will limit most people from the research
- Combinatorial sputter deposition equipment
 - High quality
 - High throughput

What if Reduce cost 100 times?

http://www.semicat.com/about_us

High quality thin Film Research PVD

- High quality sputter deposition
 - Background vacuum 9x10⁻⁸ Torr
 - Independent three Pulsed DC sputtering
- Friendly operation interface
 - Automatic run with programed recipe
 - Experimental parameters can be monitored and recorded.

Vacuum interface

Recipe interface

operation interface

High Quality Extensive New Materials Research Capability

Capability to co-sputter and deposit stacks

Metals

Metal nitrides

Alloys

Metal oxides

Affordable high quality characterization facilities

- World class metrology available on-site:
 - Spectroscopic Ellipsometry
 - o Refractive index n, k, as well as film gradient
 - Single layer films / multiple layers stacks
 - Optical UV-VIS-IR spectra (200nm-2500nm)
 - o Transmission, reflection and absorption
 - Unique Optical Reverse Engineering and Software
 - Electrical Sheet Resistance, Carrier density and mobility
 - More characterization available on site with a partner
 - o AFM
 - XRD/XRR
 - Optical profilometer
 - o SEM

High quality data: Unique Optical Reverse-Engineering.

The more measurements + Software → higher accuracy→ more analysis information

- Ellipsometetry (SE) + Transmittant(T)
 - Much more accurate n,k , thickness
 - Gradient along thickness direction

- SE + Trans. + Refl. + R (sheet resistance)
 - More accurate thickness, n, k,
 - More information: Gradient, carrier density, mobility

Carrier Density and Mobility by Ellipsometry (SE)

+ Transmittance (T) + sheet resistance (R)

Software overcomes the knowledge barrier reduces the research time and cycles

- Optical prototype product research
 - No need for years training any more (no PHD degree is OK)
 - No need for extensive DOEs any more (cost significantly reduced)
 - As long as the model design results meet the spec, nearly
 90% post deposition film can meet the spec

Researchers can focus their research goal, reduce knowledge /

process barrier.

Layer 1 Thickness

Example of an optical coating spec

Measured data for as-coated and heat-treated stacks							
			AC	HT			
			AC				
Monolithic	T	Y (%)	79.1	82.2			
Optics		a*	-6.25	-5.60			
(III 'C',		p.e	0.94	1.25			
2 deg obs)	Rg	Y (%)	5.51	5.91			
		a*	9.26	8.22			
		b*	-4.96	-4.37			
	Rf	Y (%)	4.67	5.46			
		a*	8.07	10.46			
		b*	3.94	1.40			
	A[vis] (100-TT-R			12.4			
IGU Optics	T	Y (%)	71.7	74.5			
(III 'C',		a*	-6.64	-5.98			
2 deg obs)		b*	1.05	1.32			
	Rg	Y (%)	10.70	11.50			
		n*	3.25	2.78			
		b*	-3.09	-2.53			
	Rf	Y (%)	12.00	12.60			
		n*	3.10	4.51			
		b*	1.22	0.24			
Normal Emissi	Normal Emissivity (EN)			0.007			
Haze (%)				0.58			
HT - AC	Rg ∆E*			1.6			
	T AE*			1.5			
	T Δb*			0.3			
	$T \Delta Y \% (HT > AC)$			3.1			
NFRC 2001	Tvis (%))`	32	33.6			
Thermal	Tsol (%))	71.8	74.6			
Performance	SHGC(3	3)	0.235	0.228			
	SHGC(2	2)	0.428	0.425			
	Uval		0.345	0.36			
	LSG(3)		1.68	1.75			
	LSG(2)		2.08	2.07			

*US patent :US 2014/0272354 A1

Workflow: Fast Research Cycle

Glass Substrate

Combinatorial deposition

Stack

New materials

Metrology: Optical and Electrical, Thermal

New DOE based

Model design

55 nm Si3N4

17.5nm AgTi

53nm Si3N4

Glass

New Model Design

Revers Engineering

Unique quick screening/prototyping optical products

- How fast is fast?
- Is that possible to finish a patent alert or a publication in two weeks?

Average less than 2 weeks for a patent alert?

Trends for More Innovations

A new path for more innovations

- Today this was a news: "Amateur astronomer catches first glimpses of birth of a supernova"
- Could optical materials research is common as amateur astronomers someday?

- The threshold for optical research is significantly reduced now,
 - Anyone who has a dream of innovation, could spend his effort, could achieve some prototypes, patents, publications, by a new lab service.
 - Tens of thousand \$ is possible for a project
 - A family, rather than a company is possible for a research funding by a personal reason
 - A research director, without a complicated funding applications, could decide a small funding
- Affordable Lab → more brains, → better ideas, → more innovations.
 Labforinvention.com

Case study 1: Co-sputtering for new materials / Optical coating optimization development

 New materials Ag_xTi_y research and characterization

Published: G. Ding and T. Lu, 8th International Conference and Exhibition on Lasers, Optics & Photonics, Nov. 2017, USA

Labforinvention.com

- Designing an energy saving product with the new materials
 - High performance product
 - Publication was done in 2 weeks

Case study 2: High transmittance energy saving window coating product development

- A publication was finished in less than 2 weeks.
- High transmittance low-E coating obtained, matches high transmittance low-E performance
 - Coated glass T_{vis}: 86%
 - Insulating Glass Units Performance:
 - o T_{vis}: 79.0%
 - Light-to-Solar Gain: 1.51

Results published:

Zhou et al., 14th International Conference and Exhibition on Materials Science and Engineering, Nov. 2017, USA

Layer 3:	SiN_{χ}	45 nm	
Layer 2:	AgX	13 nm	
Layer 1:	SiN_x	45 nm	
Glass sub	strate		3 mm

Case 3 Trouble-shooting customer issues

- There is a color issue in a customer coating
- We did Optical Reverse Engineering which indicated that there was a metal migration into another layer by xx%.

- -Software Designs a new coating stack
- –PVD deposition
- > Resolve the color issue

Summary

- The future research trends on faster, cheaper, better solutions as the trends of Moore's law.
- There will be a point in time when the research threshold is so low that attract more brains, with more ideas for more innovations.
- Labforinvention is such a Laboratory with a mission of better, faster cheaper solutions for thin film research.
- "Optical coating innovation is accessible, affordable, and open to everyone who want to have an innovation", is closer to the reality.
- Thanks to our partner, Covalent Metrology, better, faster and cheaper data for every client
- Thanks for your attentions