Low Temperature Plasma Technologies for Advanced Packaging Applications

NCCAVS - Northern California Chapter AVS Joint User Group Meeting (CMP, PAG, & TFUG)

David Lishan

June 12, 2018
Outline

Plasma-Therm Introduction
Deep Silicon Etching / TSV
Low Temperature Strip / Clean
TSV Isolation and Seed Layer
Surface Activation
Plasma Dicing
Etch and Deposition Solutions
Lab-to-Fab

Etch & Clean Solutions: ICP, RIE, PE, PHF-RIE, DRIE, HDRF, IBE, RIBE, HF release
Deposition Solutions: PECVD, ICP-CVD, IBD, FAST-CVD
Plasma Dicing Solutions
DEEP SILICON ETCHING / TSV
DRIE – Deep Reactive Ion Etching

- Passivation ($C_4F_8 \rightarrow (CF_2)_n$)
- Selective passivation removal
- Isotropic etching of Si (SF_6)

- Low temperature
- Highly chemical etch mechanism
- High material selectivities (<250:1 to PR, 700:1 to SiO$_2$)
- High etch rates (25um/min)
- Anisotropic

Scallop Depth

Scallop Length
DRIE – High F Radical Concentrations
Fast Process Steps and Process Control

Low scalloping

Fast Gas Switching (FGS)
- SF$_6$
- C$_4$F$_8$

Decreasing step times

Profile Control

- With Morphing
 - Vertical profiles
- Without Morphing
 - Tapered profiles

- Fast valve response time
- No MFC overshoot pressure

Path

- 0.2
- 0.5
- 1
- 2
- 5

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>start</th>
<th>end</th>
<th>path</th>
</tr>
</thead>
<tbody>
<tr>
<td>electrode Bias</td>
<td>375</td>
<td>550</td>
<td>0.2</td>
</tr>
<tr>
<td>Dep time (sec)</td>
<td>1.5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

11nm
DRIE

Wide range of etch capabilities

- Aspect ratio 60:1
- High Load
- Smooth sidewalls roughness < 10 nm
- Notch reduction on SOI
- High Etch Rate > 25 µm/min
- Low Tilt Angle <0.2º
- High selectivity Si:PR > 200:1
 Si:SiO₂ > 700:1

Optimized reactor
DRIE

Wide range of applications
DRIE – TSV Applications

50µm Via diameter
200µm deep

Etch Rate > 7 µm/min
Uniformity <1.5%
Selectivity Si: PR > 175:1
Straight profile 89.9 +/-0.1

Undercut < 500nm
Scallops < 76nm

50µm Via diameter
150µm deep

Etch Rate > 14 µm/min
Uniformity < 5%
Straight profile 90.5 +/-0.5

Undercut < 1 µm
Scallops < 400nm

10µm Via diameter
100µm deep

Etch Rate > 14 µm/min
Uniformity < 5%
Straight profile 90.5 +/-0.5

Scallops < 400nm
Low Tilt & SOI Applications

Low Tilt Angle

Notch reduction on SOI wafer

2 to 10µm wide trench
40µm deep

Etch Rate > 7µm/min
Uniformity 2%

* Si open area 15%

More good dies per wafer
LOW TEMPERATURE STRIP / CLEAN
Plasma-Therm: HDRF™
High Density Radical Flux

HDRF™ technology
Active species: O* Radicals

Conventional RF
Active species: O* + Ions
Ions = damage, heating

- High plasma density ICP source
 - Radicals density > 1E17 cm⁻³
 - Mainly O* radicals at wafer level

- Low damage on sensitive devices
 - Low ions at wafer level
 - Low temperature processing < 80°C

“mini” ICP sources

Plasma-Therm
DRIE polymer removal

EDX analysis (Energy Dispersive X-ray Spectroscopy)

DRIE Bosch polymer – Via top

trace of F and C

After HDRF

No more trace of F and C

XPS analysis (X-ray Photo-electron Spectroscopy)

DRIE Bosch polymer – Via bottom

F* peak

After HDRF

No more F* peak

Efficient dry cleaning technology, to remove fluor-carbon polymers
PR & Polymer removal

SEM and EDAX \(Pre \rightarrow Post \) measurement

<table>
<thead>
<tr>
<th>Spot</th>
<th>C (Weight %)</th>
<th>O (Weight %)</th>
<th>F (Weight %)</th>
<th>Si (Weight %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot 1 (PR)</td>
<td>73 → 0</td>
<td>27 → 0</td>
<td>0 → 0</td>
<td>0 → 0</td>
</tr>
<tr>
<td>Spot 2 (polymer)</td>
<td>29 → 0</td>
<td>0 → 0</td>
<td>71 → 0</td>
<td>0 → 0</td>
</tr>
<tr>
<td>Spot 3 (baseline)</td>
<td>0 → 0</td>
<td>0 → 0</td>
<td>0 → 0</td>
<td>98 → 100</td>
</tr>
</tbody>
</table>
Low-temperature PR (and polymer) strip

Low temperature HDRF process
For temperature sensitive applications

Higher strip rate with increasing temperature
Micro Mirrors Cleaning

- Elimination of mirror tilt due to residues
- Damage-free. No electrical charging
- Yield improvement
TSV ISOLATION and SEED LAYER
F.A.S.T.® Crossroads of ALD and CVD

(PE)CVD

(PE)ALD Monolayer growth

Fast Atomic Sequential Technology

Multilayer growth
3D Technology Approaches for TSV

ALD PEALD

Very Thin & Conformal

Process time

PECVD

Very thick & Non-conformal

Process time

FAST

Thick & Conformal

Process time
Provides increased conformality vs. PECVD, PVD

Combined mode (FAST + ALD)
Wide material range and applications

OXIDES
- TiO₂
- SiO₂
- HfO₂
- Al₂O₃
- Ta₂O₅
- ZnO

NITRIDES
- TiAlN
- TiN
- TaN
- TaCN
- SiN

METALS
- GeSbTe
- Cu
- W

Conductive films

Insulators
- Metal alloys
- Planar layers
- Optical materials
- Barrier layers

Protective coatings

Hardmask

Plug contact
3-D Integration

<table>
<thead>
<tr>
<th>Process Step</th>
<th>Criteria</th>
<th>Current Capability</th>
</tr>
</thead>
</table>
| TSV Via Etch | • High etch rate, resist selectivity
• In-situ nozzle open
• Vertical profile
• Smooth side-wall
• Depth uniformity
• Si recess etch | ![Image of TSV Via Etch] |
| TSV CVD Liner | • Conformality
• Sidewall thickness
• Thermal budget
• Adhesion
• Breakdown voltage
• Leakage current
• Dielectric constant | ![Image of TSV CVD Liner] |
| TSV PVD Barrier/Seed | • Up to 10:1 aspect ratio
• Continuous Seed
• Copper Barrier
• Temperature management
• Process bonded substrates | ![Image of TSV PVD Barrier/Seed] |
| TSV ECD Fill | • Up to 10:1 aspect ratio
• Void-free fill
• Low overburden
• High stability
• High throughput
• Low defects | ![Image of TSV ECD Fill] |
| TSV CMP | • High removal rate, low CuC
• Good surface finish
• Process/endpoint control to ensure uniformity
• Tunable topography
• Low defects | ![Image of TSV CMP] |
| RDL and Bump PVD, ECD, CVD | • PVD & ECD
• Process bonded substrates
• Glass, Silicon carriers
• Temperature management
• Wafer bow management
• Package control | ![Image of RDL and Bump] |

F.A.S.T.
- SiO₂
- TiN/Cu
F.A.S.T.® SiO$_2$ Liner
Comformalilty tuning (150°C)
TiN example with FAST (375C)

MOCVD:
- High, non-linear growth rate

ALD:
- Low deposition rate

FAST:
- Linear, fast growth rate, wider process window

Wider process window
Cu film performances

Deposition

- Using Cupraselect® precursor and H$_2$
- Deposition rate 30nm/min
- Deposition temperature below 200°C

![Graph showing resistivity vs. temperature](image)

- CVD
- FAST

- 95% CONFORMITY
 - 10:1 AR

![SEM image of via](image)
SURFACE ACTIVATION
Surface Activation and Cleaning for Wafer Bonding

Without plasma treatment

With plasma treatment

Silicon to Silicon and Silicon to Quartz. \(\text{Si-OH} + \text{HO-Si} \rightarrow \text{Si-O-Si} + \text{H}_2\text{O} \)

HDRF plasma: reduced ion-impact allowing longer exposure to radicals. Lower surface activation energy promotes bonding.
Underfill – surface activation at low temperature

Benefits:
- Better epoxy wetting and reflow
- Fewer voids, increased yield

Chemical, low UV and ions, low temp

Example: contact angle from 60-80° to 10° with O* radical exposure
Wire Bonding Pad Cleaning

Organic cleaning with O2
+ 2nd step de-oxidation with H2

Contamination and/or oxidation removal from the bond pads prior to wire bonding to increase reliability and yields
Current Wafer Dicing Technology - Sequential Processes

Blade Dicing
- Damage: cracks/chips
- Orthogonal layouts required
- Slower for thin wafers (<100μm)
- Slower for small die
- Poor accuracy
- Debris and water residues

Laser Dicing
- Damage:
 - thermal, recast, debris, delamination, micro-cracks
 - Orthogonal layouts required
 - Slower for small die
 - Multiple passes for thicker wafers
Plasma Dicing: Parallel Process

- Chemical process – low temperature
- No silicon damage
- Thinner wafers = shorter process
- High selectivity = low setup cost
 - No additional mask required
- No tape damage
- Accurate and precise control of die size
- Dice any shapeslayouts
Plasma Dicing Benefits

Lower Cost Per Die

- Thinner wafers = faster dicing speed
 - 50µm thick wafer < 3 min for dicing

More Die per Wafer

- Ultra narrow streets (~ < 5µm)
- Less wafer starts, more capacity

No Layout Design Constraints

- Freedom to dice any shape, multi-product wafers
- Rethink/relocate test/alignment areas

Higher Die Strength

- No chipping or micro-cracking
- No mechanical or thermal stress

Highest Accuracy

- Die size variation determined by the mask

Plasma-Therm
Plasma Dicing on Tape
Low temperature, highly selective DRIE Bosch

Using the device’s passivation, the plasma etches the silicon in the streets.
A Variety of Passivation Materials Can Serve as Masks

- **SiO$_2$ Mask**
 - Depth: 300µm
 - Width: 15µm
 - Selectivity: >800
 - No notching

- **PR Mask**
 - Depth: 150µm
 - Width: 15µm
 - Selectivity: >430
 - No notching

- **PI and exposed Cu**
 - Depth: 250µm
 - Width: 100µm
 - Selectivity: >250
 - No notching
Better dicing → Better die quality
Superior Die Strength

- No chipping, no lateral damage
- Enables thinner devices and wafers

Eliminates “seal” rings

1 mm² die

120µm thick Si die

© 2014, ON Semiconductor, All Rights Reserved

Plasma-Therm
More Die Per Wafer

Normalized Die Count per Wafer and Die Size

** Die% - Street 80um
Current CMOS Production Standards

** Die% - Street 40um
Achievable by Advanced Laser and Blade

** Die% - Street 5um
Achievable by Plasma Dicing

Die Size (mm)

101% 101% 102% 102% 103% 103% 105% 104% 108% 106% 108% 112% 116% 112% 124% 115% 132% 136% 187%

10X10 10X5 5X5 3X3 2X2 2X1 1X1 1X0.5 0.5X0.5 0.2X0.2

** Similar results for 200mm & 300mm wafers
** 3mm exclusion region used in calculations
New Dicing Capabilities with Sidewall Profile Control

Additional Sidewall Surface Area
Application-tailored scallop size, without chipping

Tapered Profiles
Improved epoxy reflow & mold encapsulation

Variable Sidewall Quality
Deliver smoother sidewalls in active area and in non-active area.

Plasma dicing provides smoother sidewalls, and new sidewall profile capabilities which can solve downstream packaging challenges.
New Dicing Capabilities
Dice any shape or layout

Examples: Power devices, multi-product wafers, RF devices, LEDs, image sensors, microphones
Plasma Dicing Adoption

<table>
<thead>
<tr>
<th></th>
<th>Qualified (in production on MDS)</th>
<th>Under Qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR Image sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D MEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III-V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wafer size</td>
<td>6 & 8”</td>
<td>3 & 4”</td>
</tr>
<tr>
<td>Wafer type</td>
<td>Si, GaN/Si</td>
<td>GaAs</td>
</tr>
<tr>
<td>Street size</td>
<td>10µm</td>
<td>20µm</td>
</tr>
<tr>
<td>Wafer thickness</td>
<td>>50µm</td>
<td>100+300µm</td>
</tr>
<tr>
<td>Assembly</td>
<td>Wirebond</td>
<td>Flip Chip</td>
</tr>
<tr>
<td></td>
<td>Flip Chip</td>
<td>Wirebond</td>
</tr>
<tr>
<td></td>
<td>Confidential</td>
<td>Flip Chip</td>
</tr>
<tr>
<td></td>
<td>Confidential</td>
<td></td>
</tr>
</tbody>
</table>

© 2014, ON Semiconductor, All Rights Reserved

© 2015 Plasma Therm All Rights Reserved

© 2015 Plasma Therm All Rights Reserved
Acknowledgements

Christopher Johnston, Plasma Therm
Thierry Lazerand, Plasma Therm
Dr. Marco Notarianni, Plasma Therm
Dr. Kenneth Mackenzie, Plasma Therm
Yannick Pilloux, Plasma Therm
Julien Vitielo, Plasma Therm
Gordy Grivna, ON Semiconductor
Jason Doub, ON Semiconductor
Dr. Tomotak Tabushi, DISCO
Dr. Frank Wei, DISCO
Hideyuki Sando, DISCO
JS Jung, DISCO

Thank you for your contributions and materials to prepare this presentation
Thank you

Contact: david.lishan@plasmatherm.com