

NCCAVS CMPUG/TFUG/PAG Joint Meeting ADVANCED PACKAGING TECHNOLOGY Tuesday June 12, 2018

Equipment and Process Challenges for the Advanced Packaging Landscape

Veeco Precision Surface Processing

Laura Mauer

June 2018

» Advanced Packaging Market Landscape

» Packaging Concepts and Equipment Challenges

» Approaches and Examples

» Summary

2

Advanced Packaging Landscape - Markets

- Smartphones
- Memory
- Connectivity
- Data centers
- Automotive
- Smart Home

Moore's Law and More than Moore

3D High Performance Devices Require TSV

2.5D Interposers for Heterogeneous Integration

A configuration where dies are mounted side by side on one side of a thin (~ 100 um) <u>silicon, glass, or organic interposer</u> using through *silicon* vias (TSV), through *glass* vias (TGV) or through *organic* vias (TOV), respectively through the interposer to connect the dies with the package substrate.

Microbumps

Other Technologies for Heterogeneous Integration

Source: ASE.

Wafers / Panels / Sizes for Advanced Packaging

Source: Yole

YOLE

Panel Size Uncertainty for Large Area Fan-Out

Source: TechSearch International

Dimensions and Cost

Advanced Packaging Options

Equipment and Process Flexibility for Advanced Packaging Options

Chemistry Example: Wafer Thinning

13 Copyright © 2018 Veeco Instruments Inc.

Requirements for 2.5D and 3D Wafer Thinning Applications

Silicon Wet Etch Options

> KOH (Potassium Hydroxide)

- » Good etch rate and selectivity (Silicon to Oxides /Cu)
- » Ionic contamination (K+)
- > TMAH (Tetramethyl Ammonium Hydroxide)
 - » Safety concerns (toxicity) at high concentration
 - » Slow etch rate
- > HF / Nitric based chemistry "Spinetch"
 - » High etch rates but poor selectivity (Silicon to Oxides /Cu)

> SACHEM Reveal Etch™

- » Lower toxicity than TMAH
- » Higher etch rate and good selectivity (Silicon to Oxides /Cu)

Etch Selectivity

> Ability to etch silicon and stop on a variety of materials without causing damage

HF/Nitric Mixture*			SACHEM Reveal Etch™			SACHEM ST2011		
Material	Etch Rate (nm/min)	Selectivity to Silicon	Material	Etch Rate (nm/min)	Selectivity to Silicon	Material	Etch Rate (nm/min)	Selectivity to Silicon
Si	9000		Si	711		Si	150	
SiO2	50	180	SiO2	0.5	1422	SiO2	0.5	300
Si3N4	2.7	3333	Si3N4	0	> 10000	Si3N4	0	>10000
Cu	2400	3.8	Cu	12	59	Cu	0	>10000
Ti	750	12	Ti	0	>10000	Ti	0	>10000
TiW	144	63	TiW	1.9	374	TiW	0	>10000
PI	0	>10000	PI	5.6	95	PI	0	>10000
PBO	0	>10000	PBO	7.5	126	PBO	0	>10000

* Spinetch D 1:6:2:1 HF:Nitric:Phosphoric:Sulfuric

16

Veeco

Copyright © 2018 Veeco Instruments Inc.

> Step 1

- » Spinetch D (HF / Nitric mixture)
 - » To smooth surface and eliminate grind marks
 - » Contour silicon thickness for improved uniformity

> Step 2

- » SACHEM Reveal Etch™ (or ST2011)
 - » Selective etch of silicon
 - » TSV oxide liner and Cu via
 - » Other materials present at end of silicon etch for FOWLP

Etch Uniformity

- Post Grind non-uniformities can have radial dependence
 - » Center to edge variations
- Single wafer etch process can compensate for radial nonuniformities
 - » More/Less etch in center of wafer
- Resulting Silicon wafer thickness is more uniform

Integrity of Via and Oxide Liner for TSV Reveal

FOWLP Silicon Etch Results

Strong Alklaine Etch (TMAH) caused damage to underlying RDL structure

Use of acid etch or 2 step etch process provides good results with no damage to underlying structure

"High Density TSV-Free Interposer (TFI) Packaging with Submicron Cu Damascene RDLs for Integration of CPU/GPU and HBM" IME presentation at ECTC 2018

Process Control: Etch and Undercut

21 Copyright © 2018 Veeco Instruments Inc.

UBM/RDL Etch and Dimensions

- > Smaller bumps with increased density
- > Need for less undercut and controlled etch
 - » PSP WaferChek® Process Monitor for endpoint detection
- > Recent demonstration on 10 and 20µm pitch bumps

Current Products

22

Future

UBM Etch – smaller bumps and higher density

RDL Etch – Pattern Density Challenges

Isolated and Dense Features

Embedded structures

Undercut and Overetch

- > Isotropic etch results in undercut equal to thickness of film if etch stopped at endpoint
- > For narrow Line/Space dimensions undercut must be minimized
 - » Reduce Thickness of seed layer

321137-

» Eliminate / Reduce overetch

Seed Layer Overetch and Undercut

0 3704 (#

WaferChek® In-Situ Process Control for Endpoint Detection

UBM Etch : Cu Over TiW

Process Requirements

- Completely etch away field metal (barrier and seed metals)
- Keep overetch to a minimum for bump integrity, electrical performance and throughput
- ➢No substrate attack
- Low Cost \$/wafer processed

Undercut and Etchant Selection

HF

Copyright © 2018 Veeco Instruments Inc. 27

ADVANCED PACKAGING TECHNOLOGY Tuesday June 12, 2018

Quantifying the Impact of Over-Etch on WPY Under Bump Metallization (UBM) Etch Example

Example: Over-Etch Impact on T/P

Etch Example*	Cu or Ti Etch	Production Loss					
Etch Time (sec)	60	2000					
SRD Time	60						
Overall Process Time (chambers in Parallel)	120						
Handling (wafers in/ out)	24						
Number of Chambers	1						
Throughput (wph) with WaferChek	25	Baseline					
Impact of 30% over-etch (wph)	22	11%					
Impact of 100% over-etch (wph)	18	29%					
Available Production Hours	7,862						
Wafers Per Year with WaferChek	196,560	Baseline					
Wafers Per Year at 30% over-etch	174,720	11%					
Wafers Per Year at 100% over-etch	138,748	29%					
* Process times will vary depending on feature dimensions,							
barrier metals, thickness, etchant							

Substrate Handling Example: Cleaning on Film Frame

Cleaning Wafers on Film Frames – post debond from carrier

Larger than 300mm wafer ~380mm

Removing residual adhesive without affecting tape film frame \rightarrow combination of appropriate chemistry and physical force

Removing thick layer of adhesive without damage

PRE - as received

Immediately after processing

31

Cleaning post debond on film frames

- > Fixturing to handle and support wafer on film frame
- Chemistry for cleaning/stripping residual and compatible with tape
- > Use of physical force (high pressure spray / high velocity spray) to assist in cleaning

Summary

- > No single road being followed for Advanced Packaging
- > Many different types of packages depending upon application requirements
- > Equipment flexibility and versatility will be needed to address
 - » Substrate size and form factor
 - » Shrinking dimensions
 - » Materials
- > Process solutions combine equipment and chemistry

