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Market Needs Drive Requirements and Technology Innovations 

3 

• Power, performance, cost/area (PPA) 
are driving our industry 

• Customers demand the highest 
performing processors  

 

Performance Power Cost/Area 

Slide from Paul Besser, Semicon Korea 2014 

A4       A5        A6            A7           A8 A9 

32nm HKMG     28nm HKMG       20nm HKMG    14nm FinFET 
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Innovations in Silicon Manufacturing 

February 23, 2017  Paul Besser, NCCAVS Symposium in San Jose, CA  4 

11 Elements 

+4 Elements 

+45 Elements 
 (Potential) 

New materials enable innovation by  
 Improving performance,  
 Enabling dimensional scaling, and  
 Improving reliability  

Slide from Paul Besser, Semicon Korea 2014 
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MOL and BEOL Materials Innovations Roadmap 

• Improving performance (data access speed, battery life, etc.) is much more than 
just shrinking the dimensions of the processor 

• Novel materials innovations drive contact and BEOL RC improvement (reduction) 
• RC Delay ∝ Resistance x Capacitance  
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BEOL — How Important Are Resistance and Capacitance? 

 

          

• Back-end interconnect resistance will dominate 
product performance at 5nm  

• BEOL capacitance scaling slows, beyond 10nm 
 

Greg Yeric, ARM (IEDM 2014) 

 Key issue at 5 nm: non-scaling parasitics 

 Line Rs dominates but at 5 nm 

 Via Rs will affect design  

 More power is required when design adds a buffer to 
compensate for R  

 Unidirectional patterning has made via Rs more critical 
since it requires routing changes; standard cell routes 
must go through multiple vias B
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James Hsueh-Chung Chen (IITC 2014) 

Besser, ECS Prime, October 2016 



BEOL RC Reduction Innovations for Future Generations 

• How to reduce C 
• New lower K dielectrics, even dielectric replacement  

• Air gaps  

• Lower K ESL   

• How to reduce R 
• New metals 

• Reduce barrier thickness 

• Reduce barrier metal resistivity 

 

RC Delay ∝ Resistance x Capacitance  
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Capacitance Reduction Opportunities 
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Challenges with Lowering Capacitance 

• Capacitance (C) can be reduced by lowering the dielectric constant (k) of the material, but at a cost!  
• Dielectric constant is lowered by changing the chemical composition of the dielectric or by introducing 

porosity (pULK)**  

• i k will i elastic modulus (E)  reliability, integration, and packaging issues 

• Process-induced damage to trench sidewall and top interface is a major integration challenge** 
• Higher K, moisture uptake, increased capacitance, TDDB failure 

** Alfred Grill et al. Appl Phys Rev 1, 011306 (2014) 

February 23, 2017  Paul Besser, NCCAVS Symposium in San Jose, CA  9 

P.R. Besser, ECS Trans 2(6), 3 (2007) 



TDDB Lifetime and Interconnect Scaling 

• Capacitance reduction by increasing porosity is high risk with little benefit 
• TDDB is a critical hurdle for BEOL scaling, suffering an order of magnitude degradation for each generation 

@ ULK2.4 
• Reducing ULK dielectric constant further degrades dielectric reliability 
• Poor LER and misaligned vias can further degrade TDDB 

 

 

S.-C. Lee, (TSMC) IRPS 2014 

“Progress in lowering k, or even maintaining it at present levels, with continued technology 

progression requires integration of (novel) non-porous materials or changes in interconnect 

architecture to include air-gaps.”* 
*A. Oates (TSMC) IEDM 2014 

TDDB lifetime as a function of  
spacing with ULK2.4 

G. Bonilla, et al (IBM/GF), IRPS 2011 E. V. Besien (IMEC), AMC, 2010 
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New Dielectrics Can Help Reduce RC, but Have Challenges 

• Porous low k were introduced as part of the 32/28 nm technology 

• h porosity i k value, but dielectrics have h process-induced damage and i mechanical strength 

• Damage h the effective k and can erase the capacitance benefit 

• As a result, at tight pitch interconnects, industry options are ** 
• Higher K, non-porous, dense LK dielectrics (less susceptible to damage)  

• Single precursor formulations (dense LK) with a lower K, and/or 

• Low porosity ULK with higher C content 

 

• Industry is spending much resource and has a huge risk  
exposure for a little gain in C   
• Is there a better way? 

** E Todd Ryan et al, IITC-MAM (2015) Rama Divakaruni (IBM) SOI Technology Summit, Shanghai (2013) 
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Technology Elements of Air Gaps (AG) in Integrated Circuits 

• Air gap insertion has been demonstrated to reduce capacitance and  
lower the effective dielectric constant 
• Logic had AG >20 years ago: Al technology, pre-unlanded vias 

• Memory AG in production for years:   NAND BL-BL + WL-WL, DRAM  BL-BL 

• AG for capacitance reduction reemerging ** 
• Implemented by Intel 14 nm in performance critical layers   

• Two metal levels, with one level without air gap between AG layers 

• Huge RC gain was realized – 14 and 17% at 80 and 160nm pitch. 
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Fischer et al., IITC/MAM (2015) 

G Schindler et al., AMC (2006) 

** Intel, IEDM (2014) 



Air Gap Structure and Integration Flow 

1. Diffusion barrier open in select AG 

regions 

 

2. Low-k etch process 

 

3. Post-etch strip/clean 

 

4. Conformal dielectric barrier 

deposition 

 

5. Non-conformal low-k deposition to 

create AG 

Every process step is critical for reliability, but conformal DB dep affects design 
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Reliability Considerations:  Short Lines are Integrated in Products! 

• Under normal electromigration (EM) testing,  
• As atoms diffuse along the line length, compressive and tensile stresses develop at opposite 

ends of the line 

• Line length: 
• If the line is long, then a void develops in the line = failure 

• If the line is short enough (< jLcrit), there is a balance between  
electromigration- and stress-induced atomic diffusion 

• Short-line effect:  
• Short lines will never fail (< jLcrit = Blech Length) 

• Short-line effect will depend on dielectric material** 
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**Hau-Riege et al., J. Appl. Phys. 96, 5792 (2004) 
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Designers utilize and rely on short line effects in their designs for tight pitch interconnects; however, 

Blech Length is also considered at all metal layers, for deciding current density design rules 



Thickness of DB, Post Air Gap Formation, Affects Reliability 

• Air gaps have to be designed into the chip 
• Air gaps are selectively introduced, avoiding vias and placing air gaps at 

critical layers with high current densities for maximum benefit 

• Process-oriented simulations reveal affect of Air Gaps on circuit 
design: 
• As expected, the tensile stress in Cu lines increases  

linearly DB thickness 

• Jlcrit (Blech Length) in an air-gapped interconnect  
depends on SiCN (DB) thickness and increasing the  
DB thickness degrades Jlcrit 

• Airgapped interconnects with 5 nm conformal SiCN  
have a Jlcrit  comparable to non-airgapped  
interconnects (with ULK 2.5 ILD) 

• DB must be thick enough to be hermetic, but if too  
thick, Jlcrit will be degraded, affecting circuit design 
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Houman, Besser, Wilson and Croes, JAP 120, 095103 (2016) 



Dielectric Barrier/Etch Stop Layer Requirements 

• Requirements for dielectric barrier/ESL 
• Cu diffusion barrier 

• Hermetic barrier for moisture and O2 

• High etch selectivity 

• Excellent adhesion to metal and ULK 

• High breakdown voltage and low leakage 

• Low dielectric constant 

 

• A combination of high etch selectivity ESL and thin hermetic Cu barrier enables DB scaling 

• A high selectivity ESL can provide better control of unlanded via over etch  
and enable TiN wet removal with protected via bottom 
• Replacing SiCN with AlN + SiCO is a offers a highly conformal stack with high etch  

selectivity, keff reduction, and excellent diffusion barrier;  

• film is hermetic at 3 nm thick. 
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Thicker Barrier  

Slide from Paul Besser, ECS (2016) 



Dielectric Barrier (DB)/Etch Stop Layer (ESL) Scaling to the Rescue 

• Modelling suggest thinning or scaling the DB to 5 nm NDC thickness provides 7% keff reduction, 
which is more than one generation of low k dielectric progress. 

• Can DB/ESL continue to scale with all the DB/ESL requirements and increasing complex 
patterning? 

Intel 

tsmc 

SEC 14 nm 

18nm SiO2 

18nm SiCN 

Samsung 
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Dielectric Barrier (DB)/Etch Stop Layer (ESL) Scaling to the Rescue 

• DB/ESL remains as the key process for capacitance reduction  

• Co-optimization of etch and ESL is needed to enable robust via patterning and capacitance 
improvement  
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• Integrating AlN + SiCO stacks as a replacement for 
SiCN provides an integration advantage: 

• Scaling enabled 

• High etch selectivity 

• Significant keff reduction 

• Excellent diffusion barrier 

Slide from Paul Besser, ECS (2016) 



Resistance Reduction Opportunities 
How far can Cu extend? And what replaces Cu? 
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Understanding Copper Resistance Increase in Narrow Features 

• Resistance increase with decreasing linewidth, due to scattering 
• Electrons are scattered by grain boundaries, interfaces, surfaces, and defects (Cu electron 

mfp = 36 nm) 

• Scattering events lead to Cu resistivity h with i linewidth 

• How to compensate?  
• Increase aspect ratio of the Cu line?  Void-free fill is a challenge. 

 

P.R. Besser, ECS Trans 2(6), 3 (2007) W. Steinhogl et al., Phys Rev B66 (2002)  G. Schindler, Sematech workshop on Cu resistivity (2005) 
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Why Line Resistance Increases as Linewidth Decreases 

• Cu extendibility is challenged by fill, barrier integrity, conductive metal area, and scattering; Cu current 
carrying cross-section i with i linewidth  

• A calculation of conductive metal area and Cu line Rs as a function of linewidth reveals  
• Barrier thicknesses has not scaled below 2.5 nm, but must scale for Cu to scale below 20 nm linewidth, and 

• Area for conductive metal is small, leading to a high Rs in narrow features 
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TaN  = 1000 µOhm-cm 

Co   = 15-21 µOhm-cm 

Cu   = 4-15 µOhm-cm 

NOT dawn to scale 

Slide from Paul Besser, ECS (2016) 



BEOL Scaling Simulations: Cu can Extend to 7 nm, Maybe to 5 nm 

PVD TaN barrier + CVD Co liner 

 

PVD TaN barrier + CVD Co liner + PVD Cu seed 

 

PVD TaN/Ta barrier + PVD Cu seed 

► CoventorTM simulations (to scale) reveal the challenge with extending PVD barrier/liner/seed:  PVD overhang and can lead to 
voids in narrow features 

 Cu extendibility is a function of design rules 

 Cu seed extendibility to 5nm is questionable 

► Migrating to PVD TaN/CVD liner (Co or Ru) is likely at 7 nm to enable extendibility of Cu 
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10 nm              7 nm          5 nm 



At 10 and 7nm, Cu Extendibility is Possible 

• Co liner provides an improvement for Cu scaling; however, only to 12 nm linewidth 

• Scaling the liner thickness (with alternative liners) can extend Cu, but with a net resistance line 
resistance increase 

February 23, 2017  Paul Besser, NCCAVS Symposium in San Jose, CA  23 

van der Veen, IITC AMC (2016) 



What Is Beyond Cu? 
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Resistivity in Narrow Features (Intel, 2015) 

• At the 5 nm node, not scaling the PVD liner thickness reduces the electrical area 
by a factor of 2 while increasing the Rs by an order of magnitude 

• Based on modeling, resistivity in a 12 nm line (AR=1.5, 3 nm liner) is dominated 
by surface scattering: 
• Surface scattering (54%), bulk resistivity/phonon(15%) and GB scattering (31%) 

 

• Options to reduce line Rs:  
• Subtractive patterning 

• Scale liner thickness  barrierless 

• Smaller EMFP metals 
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Cu 

Chawla et al, (AMC 2015) 



Another Perspective:  EMFP and Resistivity 

• In the case of thin wires and/or small grain 
sizes, the wire resistivity is proportional to the 
product of EMFP (l) and bulk resistivity (r0), 
for a fixed grain size distribution and 
linewidth 

• With this metric, options to consider as Cu 
replacements are: 
• Rh cost 

• Ir  cost 

• Al  cost and thermal excursion 

• Co  

• Ni  options to consider… 

• Ru  

 
D. Gall, JAP 119, 085101 (2016) 
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Metal Options: Choosing a Good Metal Conductor to Replace Cu 

Cu Co Ru Ni 

Barrier/Liner Needed Barrier Thin liner Thin liner TBD 

Bulk Resistivity 

EMFP (nm) 39 6 10 18 

Melting Point (°C) 1083 1495 2250 1453 

Deposition processes ECD, PVD 
ECD, ELD, 
CVD, PVD 

CVD, PVD 
PVD, CVD, 

ELD 

Gap Fill of Narrow Features 

Cost 
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Co exhibits short EMFP, high melting point, and can be deposited with various techniques at low cost 

P.R. Besser, ECS Trans 2(6), 3 (2007) 



Why Cobalt for Interconnects? 

• Co is already integrated in IC processing as a liner and a cap layer 

• The shorter mean free path of electrons in Co and the reduced requirement for a barrier reduce the 
resistivity disadvantage of Co (vs. Cu) in the 15-20 nm line dimension range 

• Co electromigration (EM) is better than Cu, based on melting point and publications 

• Electroplating allows bottom-up Co fill at a low cost, but CVD/PVD also fills features 

• IMEC simulations suggest barrierless vias filled with Co have a resistance benefit for N7 and beyond 
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Enabling Void-Free Metallization with Co Electrochemical Dep 

• Co electroplating on CVD Co liner alleviates PVD Cu 
seed “pinch off” 

• Co liner oxidizes when exposed to air and leads to 
resistivity increase and potential interfacial integrity 
degradation 

• Pre-treatment of Co liner results in substantial 
conductivity increase and allows for improved 
nucleation of ECP Co film 

• Temperature/time/chemistry can be used to control 
the sheet resistance drop and Co agglomeration  

 

10 nm                    7 nm          5 nm 

PVD TaN +  

CVD Co liner 

 

PVD TaN +  

CVD Co liner +  

PVD Cu seed 

Natalia Doubina et  al., CSTIC 2016, Shanghai 
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Hui-Jung Wu et al., Semicon West (2016) 
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Other Alternatives to Cu 

• Resistance and Electromigration Performance of 6 nm Wires (Intel)   

• Line Rs and EM were measured for 6 nm CD wires; interconnect performance was measured down to 60 nm2 wire cross-
sectional area.  

• Ruthenium is an option to replace Cu at 5nm  (imec, GLOBALFOUNDRIES, IBM) 

• Ru reflows at a low temperature; resistivity is 18 µΩ-cm at 7 nm LW is better than Cu (with a 2 nm barrier); via Rs was  
comparable to Cu;  a thin adhesion layer is required (TiN), but TDDB and EM are good 

• The challenges with Ru are cost, CMP, and immaturity 

 

 

Chawla et al., IITC/AMC (2016) 
 

Adelman et al., IITC/AMC (2016) Zhang et al., IITC/AMC (2016) 
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How to Reduce Interconnect Rs Further? 

• The solutions shown thus far are incremental improvements in via/line Rs:  the 
industry needs still lower via and line Rs!   

 

Contributions to line resistance 

 

 

 

 

 

 

 

 

 

 

 

A intrinsic resistance of metal = f(material) 

B increase in Rs due to scattering = f 
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How to Reduce Interconnect Rs Further? 

• The solutions shown thus far are incremental improvements in via/line Rs:  the industry needs 
still lower via and line Rs!   

• One option: directly platable, conductive liner 
• Co-Ti (University of Tokyo). Resistivity is ~130 μΩ-cm 

• Co-Mo (Fudan University).  Resistivity is 100-150 μΩ-cm 

• Co-W (Tokyo University). Resistivity of CoW films (200 nm) with 10 and 20%W were 80 and 200 μΩ-cm. Adding 
Cp2WH2 into source gas in an ALD cycle -> CoW alloy film with 5%W without including WO3 or C reduced resistivity to 
25 μΩ-cm (15 nm thick) 

• Co-Si (Literature). Resistivity is10-40 μΩ-cm, depending on the phase of CoSix formed 
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Li-Ao Cao et al, IITC/AMC 2016 Shimizu et al., J Mater Chem C 2500 (2015) 

     Co-Ti                       Co-Mo                              Co-W               Co-Si   

M. Hosseini et al., IITC/AMC 2016 

Murarka et al, JAP (1984) 
Prokop et al, Thin Solid Films (2000) 
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Modelling of Barrier Resistivity Affects Line Resistance 

Greg Yeric, ARM (IEDM 2014) 

Calculations of line resistance as a function of 

barrier resistivity (25 vs. 1000 µOhm-cm) 

reveal barrier line Rs reduces ~40% as a 

function of barrier resistance  

(at 12 nm linewidth) 

 

Barrier resistance matters 

Circuit performance simulations confirm a 

performance gain with conductive liner 
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Summary 

• Materials innovations drive performance  
improvements in the microelectronics industry,  
creating faster and smaller devices  

• Leading-edge nodes are seeing an explosion of  
new innovations to drive BEOL RC reduction 

• For capacitance (C) 
• Capacitance scaling has slowed 
• Dielectric barrier scaling (i.e. AlN + SiCO) offers the best opportunity to reduce capacitance 

• For resistance (R) 
• Line and via resistance are the dominant source of interconnect delay at 7 and 5 nm 
• Cu line and via resistance are increasing with each technology node, due to electron scattering, 

but also due unidirectional patterning and a lack of barrier scaling 
• Conductive liner/barriers offer promise to lower line and via resistance 
• Co interconnects show great promise to replace Cu, either by  

• Electroless Co via prefill or  
• Co electroplating 
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Thank you 
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