

NCCAVS Talk <u>Material Innovation for Non-Volatile</u> <u>Memory Selectors</u>

Larry Chen, Mark Clark, Charlene Chen, Milind Weling Feb 23rd, 2017

Outline

- IMI: Technical Value Proposition
- NVM Selector Key Performance Indicators
- IMI selector screening methodology
- Case study
- Summary

IMI: Technical Value Proposition

Growing Complexity & Cost of Material Development

Source: Intel

- Advanced materials are key to Semiconductor roadmap and leadership
- Critical attributes for material discovery process
 - Enables fast screening
 - * o Handles complex and toxic material system
 - Minimizes fab exposure to contamination

IMI Offers Unique Development Platform

Accelerated Experimentation

IMI Processing Systems

- Wet: Clean, Etch, Deposition
- Dry: (PE)ALD, (PE)CVD, PVD

PVD

High throughput experimentation

Analytics Excellence

Metrology

- XRF, XRR, XRD
- ellipsometry,, UV-Vis, FTIR
- Optical microscopy
- SEM, AFM, contact angle,
- Particles (SP1)
- TEM, XPS, Auger, SIMS, TXRF, ICPMS (External Vendors)

Electrical Characterizations

Electrical Characterization & E-test Fully automated probers with heated and/or cooled chucks

- Device: C-V, I-V & parameter extraction (EOT, EWF)
- Parametric: Leakage, line resistance, contact resistance, capacitance
- Reliability: V_{bd}, TDDB
- Pulsed switching: I_{on}, I_{off}, data retention (eg. Non-volatile memory)

Deep Material and Device Innovation

Application knowledge + Understanding of integration issues

RMOLECULAR

Extensive Materials Capability

Deposition and characterization of multinary materials:

- Metal Oxides
- Metal Nitrides
- Metals
- Alloys
- Chalcogenides

1 H					PVD		ALI) or \	Vapo	r							2 He
3	4	PVD Physical Vapor Deposition 5 6 7 8 9								10							
Li	Be									Ne							
11	12	ALD Atomic Layer Deposition								14	15	16	17	18			
Na	Mg									Si	P	S	CI	Ar			
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	⁸⁶
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87 Fr	⁸⁸ Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg							
			58 Ce	59 Pr	⁶⁰ Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
			90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

Screening of Non-Volatile Memory Selectors

Non-volatile Memory Selector - Key Performance Indicators RMOLECULAR New Selector required to eliminate sneak current **Selector: Key Parameters** for cross-point memory No forming Threshold Voltage (V_{tb}) Metal 2 Sneak current paths On current (I_{on}) and density Top Electrode Memory Element (J_{on}) State Change One sneak natl Eg: ReRAM, PCRAM, CBRAM Laver Off current (I_{off}) and density Bottom (J_{off}) Electrode Top Electrode Selectivity (On/Off ratio) Selector Element State Change "Sneak path" Eg: TMO, OTS, MSM, MIEC Diodes Laver Thermal stability Bottom solved with Electrode R_s (sensing resistor) Switching speed selector Metal 1 device Endurance (AC, DC) Generic Cross-point Memory Cell * Ref: An Chen 2014 AVS TFUG Seminar

- Selector devices are critical to eliminating sneak current paths
- Disruptive selectors needed to address performance, density and reliability

New NVM Selector Device Comparison

	Selector Req'ts	MSM	Oxide- PN ⁴	MIEC ⁶	Metal- Oxide Schottky ⁵	MIIM Bi- directional Varistor ⁷	Chal OTS ⁸
Max Forward Current Density/ Feature Size	~10 ⁶⁻⁷ A/cm ²	~10 ⁶⁻⁷ A/cm ²	~5x10 ⁴ A/cm ² @2V 0.5x 0.5um	~10 ⁵⁻⁶ A/cm ² @1V ~80nm bot	3x10⁵ A/cm²@2V 2x2um	~3x10 ⁷ A /cm ² @2.5V 250nm hole	Feasibility shown for 90nm PCM
J _{FB} /J _{RB} Ratio & J _{+Vs} /J _{+Vs/2} Ratio	> 10 ⁵ > 10 ³	~ 103	~10 ⁴ ~100	~104	2.4×10 ⁶ ∼10 ³	~10 ⁴	Met PCM Req
Directionality	Uni or Bipolar	Bipolar	Unipolar	Bipolar	Unipolar	Bipolar	Bipolar
Switching Time/ Endurance	< 10ns/ > 10 ⁸	<10ns >10 ⁷	10-100ns/ ?	~ us/ > 0 ⁶	< 1ns ?	< Ins/ > 10 ¹⁰	Feasibility shown for 90nm PCM
Deposition Temp/ Thermal Stability	< 400C/ > 400C	< 400C/ > 400C	< 400C/ ?	200C/ > 400C	250C/ ?	300C/ ?	< 400C/ Issue
Typical Materials/ Stacks Used	Fab Friendly	Semicond uctors	CuO/IZO NiO/IZO	Cu in Solid Electrolyte	Pt/TiO ₂ / TiO _{2-x} /Pt	Pt/TaO _x /TiO ₂ /TaO _x /Pt	As, Ge, Si, S, Se,Te,N
I – V Curves			To the second se	Voltage (1) voltage (1) volta	Current (A)	10 ⁻ 10 ⁻ 10 ⁻ 10 ⁻ 10 ⁻ 10 ⁻ 2 ⁻ 10 ⁻ 2 ⁻ Voltage (V)	Prevalval Sniphack

Choice of selector determined by trade-off between performance, reliability and ease of integration

High Throughput Experimentation Methodology

Fast material screening for selector innovation:

- Metal Chalcogenide : 2500+ experiments
- MIEC: 2000+ experiments
- Transition Metal Oxide: 1000+ experiments

Process and Physical Characterizations

IMI P-30 PVD Chamber

Site Deposition on 300mm wfr

Pre-filter non-viable compositions

Composition

Site-isolated PVD Deposition

- Each spot is an experiment
- Each layer can be deposited by 1 to 5 sputter sources
- Multilayer stack capability
- Shutters for aperture and targets prevent cross-contamination

Physical Characterizations

- Thickness
- Composition
- Crystallinity
- Resistivity
- n & k
- Thermal stability

Response Surface: Tc, Crystallization Temp

Electrical Characterizations - Overview

Available E-Test Modules

E-TEST MODULES							
CATEGORY	NAME	DESCRITPION					
Imaging	Camera Box	Low magnification image					
Imaging	E-Vision	High magnification image					
	DC-V Uni	Single voltage sweep w/wo return					
	DC-V Bip	Double voltage sweep w/wo return					
	V-Cyc	Endurance uni/bip w/wo return					
	Leak	Leakage checks					
DC-V	CVf	Capacitance vs. voltage and/or frequency					
	V-t	Voltage stress vs. time					
	V-arb	Arbitrary voltage sweep					
	Rho	Sheet Resistance (w/wo T sweep)					
	DC-I Uni	Single current sweep w/wo return					
	DC-I Bip	Double current sweep w/wo return					
DC-I	I-Cyc	Endurance w/wo return					
	l-t	Current stress vs. time					
	I-arb	Arbitrary current sweep					
	P-IV Uni	Single sweep w/wo return/op-amp					
	P-IV Bip	Double sweep w/wo return/op-amp					
Pulse	Р-Сус	Endurance w/wo return/op-amp					
ruise	P-End	Burst/Endurance w/wo op-amp					
	P-Verify	Program Verify					
	Tran	Transient Waveforms					

Proprietary and Confidential

INTERMOLECULAR

Selector Candidates Screening Stages

Increasingly advanced electrical characterization to realize promising selector candidates

- New selector innovation needed to eliminate sneak current for cross-point memory architecture
- High-Throughput-Experimentation methodology accelerates and de-risk new selector material screening and device innovation
- IMI has successfully collaborated with customers to realize novel selector devices using HTE methodology

Acknowledgments: J Watanabe and Customer+IMI collaboration teams

