Monolithic 3D Integration using Standard Fab & Standard Transistors

Zvi Or-Bach CEO MonolithIC 3D Inc.

3D Integration Through Silicon Via ("TSV"), Monolithic

Increase integration

- Reduce interconnect total length
- Not subject to improved litho. and process
- Heterogeneous integration
 - Silicon, Optoelectronic, Sensors, ..
 - ➢ I/O, Logic, Memory, …
- New functionality utilizing the third dimension
 - Redundancy (WSI)
 - Shared Litho. And processing (BiCS)

Monolithic 3D 10,000x the Vertical Connectivity of TSV

The Monolithic 3D Challenge Why is it not already in wide use?

- > Thermal Budget of Upper Layer Processing
 - < 550°C over advanced node transistors</p>
 - > < 400°C over Copper or Aluminum interconnect
 - How to bring mono-crystallized silicon on
 - How to fabricate state-of-the-art transistors on top

Misalignment of pre-processed wafer to wafer bonding step used to be ~1µm

How to achieve 100nm or better connection pitch

> How to fabricate inter-layer vias of ~50nm

Outline: Layer Formation

- > Deposit
 - Poly silicon + crystallize by laser (Taiwan NAR Lab)
 Non silicon
- Layer Transfer
 - Bond SOI wafer and etch/grind back
 - ≻IBM, MIT Lincoln Lab
 - >Ion-Cut (Smart Cut®)
 - 'Smart' Substrate
 - >ELTRAN (Epitaxial Layer Transfer)
 - > New Breakthrough

Outline: Overcoming the Process Heat

- Non silicon transistor
- > Modified process to less than 550°C (CoolCube)
- Break transistor formation into two phases,
 - Hot-Cold
- Isolate Top layer from base- "Crème Brulee"
- 'nano-TSV' Precise ultra thin stratum transfer

Modified the process for low temp

Top FET critical thermal budget

leti

ceatech

Precision Bonder – Multi-Stratum M3D

Utilizing the existing front-end process !!!

> <200 nm (3σ)

Achieving 10,000x vertical connectivity as the transferred strata will be thinner than 100 nm

- Mix Sequential/Parallel M3D
- Low manufacturing costs

Fusion Bonding – Overlay Evolution

www.EVGroup.com

EV Group Confidential and Proprietary

2nd Stratum Processed on 'Cuttable' wafer

Flip and Bond 2nd Stratum on Top of 1st Stratum

'Cut' Carrier Wafer and Connect with Nano-TSV

The Breakthrough – SiGe – Fab Compatible 'Cut Layer'

Use selective etch of SiGe (Dry, ~1:100) for reuse

Samsung's

Applied Material's Selectra

Monolithic 3D using 'Cuttable' Substrate

- Utilizes existing transistor process (first ever)
- Leverages proven silicon processes
 Very competitive cost structure

The Monolithic 3D Advantages

-*The* **1**,000x

- Enables increased integration without size reduction
- Reduce average wire length by ~0.7x

> Heterogeneous Integration

- Type of wafer, Si, GaAs, GaN,...
- Mix fabs and nodes, 7nm, 28nm, 130nm,...
- > Mix process, logic, memory, analog, RF,..
- Multiple layers Processed Simultaneously 'BiCS'

New functionality leveraging rich 3D connectivity

- Redundancy
- Allow connectivity from both sides

EDA for Monolithic 3D

- Commercial EDA is not available yet.
- Preliminary tools and flow has been developed
 - Georgia Tec
 - Qualcomm
 - ➤ CEA Leti…

> 2D are sufficient for the 1,000x applications !!!

Summary

- > We have reached an inflection point
- Monolithic 3D would provide unparalleled advantage for most market segment
- > Multiple practical paths to monolithic 3D exist
 - Monolithic 3D could be now implemented by any fab without changes to front-line
 - > In 2017 30% of all transistors made will be M3D (3D NAND)

=>Use correctly MonolithIC 3D would provide 1,000x better devices

Monolithic 3D Integration

for 1,000x Better Computer

Processor Memory Gap

Source: Computer Architecture, A Quantitative Approach by John L. Hennessy and David A. Patterson

Why we need Exascale and why we won't get there by 2020

Lawrence Berkeley National Laboratory The Problem with Wires: Energy to move data proportional to distance

- Cost to move a bit on copper wire:
 - power= bitrate * Length / cross-section area

- Wire data capacity constant as feature size shrinks
- Cost to move bit proportional to distance

System Level Interconnect Gap Grow

Growing interconnect challenge

Source: ITRS

(c) 2017 Qualcomm Technologies, Inc.

European Semi 3D Summit, Grenoble, France, Jan 23-25, 2017

SEMICONDUCTOR RESEARCH

An Industry Vision and Guide

March 2017

Devices enabling high-density, fine-grained, monolithic 3D systems for reducing data movement and communication cost:

 High-performance devices for logic and memory suitable for low-temperature processing used for stacked layer integration; the resulting energy-delay product should be 1000X better than state-of-the-art conventional technology. Candidate materials for next-generation logic

Monolithic 3D for 1,000x better compute

Processor to memory connectivity breakthrough:

- ➤ Number of wires: ~100 ⇒ ~100,000
- > Length of wires: ~20mm ~20 μ m
- > Applications:
 - Smart-Phones
 - ≻ IoT

Replacing few mm long bus of <100 wires with few microns long bus of 2,500 x 100 wires

Array of 200µ x 200µ units each with its peripherals on top

97.6mm²

(Including Scribe Lane)

128Gb Array Plane-0

Çore Driver

128Gb Array Plane-1

Page Buffer and Column Decoder

Row Decode

Peripheral Circuits

1,000x Better Compute System Peripherals over Memory Array

Solving the 'Memory Wall'

Monolith (

- Close proximity of memory to the logic control
- > Allows a different process for the memory matrix than the peripherals

Summary

1,000x better compute Systems using M3D

- ➤ Multi thin layers each with thousands memory units =>~100,000 wires @ ~20µ length
 - => 1,000x better computer system
- Utilizes existing memory (DRAM) and logic process
- Far cheaper than any other form of DRAM module
- Yield repaired in fabrication and in operation (field)
- Memory stack could serve as an generic end product
- > Low-power (1/10), low size, low weight

New Memory Product – Generic 3D Wafer

Generic Memory Wafer

New Memory Product – Generic 3D Wafer

3D Integrated Computer

Other Approaches

Alternatives for Processor Memory Connectivity

			Processor	PCB	Module	DRAM
	2D		5mm	10-30mm	20mm	5mm
	2.5D-TSV		5mm	5-10mm	0	1mm
	M3D		0.5mm	0	0	0.2mm
_					γl	
#of Wires	M Cost					
100	1					$S \rightarrow$
1,000	2-8	2		2 5		2 5
100,000	0.5					

2D

2.5D

M3D