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entrepix What Drives Growth in Semiconductors?

« Historical Growth Segments
 Computers and PC’s
» Cell phones
» High bandwidth infrastructure

 Tablets

* Recent or Emerging Growth Segments
« Smartphones
 Internet of Things (loT)
« Power management and remote control

« Medical applications
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en’tr/eﬁ( Semiconductor Revenue by Year
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eﬁffém ynsolidation Continues to Change Landscape
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en”trép}( Historical Trends

What drives decisions in the semiconductors? SPEED and COST!

— New products must be ready on time for market launch
— Long term efficiency improves competitive strength

Moore’s Law dominated the CMOS industry for >40 years
— Not affected by cycles, markets, analysts, or the economy

Photolithography and CMP are two critical process technologies to
contributed both cost and performance improvements

— Photolithography enables SHRINKS Tansistors

MOORE'S LAW Intel® itanium® 2 Processor 1,000,000,00
Int2l” tanium®@ Processor ¢4

— CMP enables more complex STACKS

100,000,000

- | 10,000,000

Recent evidence shows very few
companies still trying to hold to
Moore’s Law ... most are choosing
to pursue alternatives rather than )
continue to pursue 2D shrinks o

Source: Intel Corporation
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Trends in Scaling and Integration

Baseline CMOS
CPU, Memory, Logic

Sensors
Actuakprs

More than Moore:
Functional Diversification

-

130 mm _I l

Information
Processing
Digital content
System-on.Chip

Interacting with poeple
and environment
Non-digital content System-
in-Package (SiP)

Source: Wolter - Bio and Nano Packaging Techniques for Electron Devices



entrepix Some Definitions

* DIP = Dual In-line Package

« BGA = Ball Grid Array
« WLP = Wafer Level Packaging
« S0C = System on Chip

* Increase functional integration by including sub-systems on a single chip.

» Includes more than just digital functions, e.g. analog-to-digital converter,
RF radio, power isolation, amplifiers, etc. built into the same die.

« SIP = System in Package
« Combines multiple active electronic components of different functionality
assembled into a single packaged unit.

« SiP may integrate passives, MEMS, optical components, and other types
of devices and may include multiple types of packaging technology.

Source: Wolter - Bio and Nano Packaging Techniques for Electron Devices
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3D Packaging Prediction from 2010
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eri’i:'i"ép}( Traditional IC Packages

Source: Clemson Technical Report: CVEL-07-001
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eﬁﬁém Electronic Package

Unlike retail or other types of packaging, the performance
and reliability of an electronic component are closely tied to
the proper design of the package.

Functions of Electronic Package

r

Signal Power Heat Circuit Support
Distribution Distribution Dissipation And Protection

Electronic packages are more than just a protective cover.

Source: Clemson Technical Report: CVEL-07-001
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eﬁffém Packaging Design Considerations
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eﬁﬂéﬁ( Types of Packages

Type of Package Primary Use and Advantages

Cheap / Simple / Well established

Standard (DIP, BGA, etc.) CMP or planarization not normally needed

Tolerates high temperature and mechanical force

Ceramic Greensheet + fill + sinter & No planarization need

Higher pinout density, thin RDL layers, thin wafers
WLP Leverages device fabrication process steps
First layers of “packaging” done before singulation

Material can be Si, polymer, or other
2.5D (Interposers) Typical integration has 3 RDL layers
Planarization required, esp. for TSV fabrication

Dense functionality, but mating connections require
3D careful design and planarization
Thermal management is very difficult

Fast growing niche
Thin / Flexible Systems Requires ultrathin devices to flex w/o cracking
Planarization of mating surfaces is essential
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entrepix Drivers for WLP

» Major applications for WLP......
— Smartphones (highest volume application)
— Digital cameras and camcorders
— Laptops and tablets
— Medical
— Automotive

— Wearable electronics such as watch

» WLP meets system packaging needs
— Small form factor
— Need for low profile packages
— Lower cost (less material)
» Form Factor is key
— Low profile

— Limited space on PCB

Source: Techsearch International (2015)



entrepix Interposers

Bonding wire Logic IC, memory chip, etc Encapsulation plastic

Sometimes called
2.5D integration

- — F— Allows mixture of
device types,
pinout spacing,
and component

Plastic interposer LE )G, ot = — thicknesses
Solder ball for external pin
Common versions

Wiring are Si, glass, or
. = ) polymer
: Ill:I 11
. W IC wiring la .
s = e ] (R Frequently include
| Al d .
. ?ﬂicrﬁbumpsh at least 3 wiring
1 1 P ip-t i
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vias as well

Source: Hopkins, University of Buffalo (2009)
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Packaging Technology Evolution
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entrepix Pulling Technologies Toegether
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en“tﬁ%( Automotive Use of Semiconductors
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The number of sensors is currently
60-100 per car ... and
IS projected to more than double
In the next 8-10 years.




en”tr/em( Semiconductor Driver — Internet of Things
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eﬁﬂém What is the Internet of Things (IoT)

« Google Definition

« A proposed development of the Internet in which everyday objects have
network connectivity, allowing them to send and receive data.

« TechTarget.com Explanation

« The Internet of Things (loT) is a system of interrelated computing devices,
mechanical and digital machines, objects, animals or people that are
provided with unique identifiers and the ability to transfer data over a network
without requiring human-to-human or human-to-computer interaction.

» |oT has evolved from the convergence of wireless technologies, micro-
electromechanical systems (MEMS), microservices and the Internet. The
convergence has helped tear down the silo walls between operational
technology (OT) and information technology (IT), allowing unstructured
machine-generated data to be analyzed and drive system improvements.
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entrepix Internet of Things (IoT)

Total MEMS Market
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Source: Industry Forecasts Compilation, 2020 forecast from IDC, PwC analysis.
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eritrép}( Other Examples of l1oT

Some Sensor Data Analytics Applications
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entfém loT benefits from packaging innovation

* Expansion of IanIuE means an increased number of sensors, but
also more connectivity, signal processing, and data storage

* Primary device requirements are low power and low cost
* No single package format
— Many applications may adopt system-in-package (SiP)

— Many just SMT modules on FR-4 board, not counted as SiP but as system-
in-module (SiM)

* One main reason loT/IoE is expanding rapidly is the low cost of
sensors and multi-die packages and modules
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eﬁﬁeﬁ( What Factors Will Influence IoT Growth Rate?

Security and Privacy Control
« Especially important for health care, retail, and critical systems data

* Interoperability
* Must have a manageable number of standards
« Software apps may hold key to cross-platform integration

e Reduced Cost

 Initial focus is on IC components and sensors
« Lower packaging, assembly and distribution costs are also critical

 Low Power

 Embedded Processing
« Can add distributed intelligence to system (local interpretation / faster decisions)

» Reduces load on communication bandwidth
Source: Semico Research (Oct 2015)
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entrepix CMP Supplier Complexity
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entrepix CMP for TSV’s

CMP is typically used in a damascene manner to planarize and isolate
the vias after conductor deposition from one side.

TSV's can be filled with any of several conductive materials.
« Most common options are copper and polysilicon.

» Final choice depends on dimensions, operating voltage and
current, frequency, temperature requirements, plus other
Integration factors.

CMP is used again after thinning to help expose and planarize the
original “bottom” of the TSV’s — called TSV Reveal.

June 2016 NCCAVS TFUG/CMPUG 27




entrepix Example: Large Cu TSV for Interposer

Background
« Large via needed for design (75-100um diameter)
* Via last with extremely thick Cu plating (about 45 um)

* Previous CMP using standard stock removal slurries resulted in very
long polish times (45 mins to 1 hour)

Goals for CMP optimization phase
» Test new high-rate Cu slurry for much shorter clear times
» Verify reasonable selectivity to nitride after barrier clear
» Dishing <1 um across 80 pum via

e Good surface finish on both Cu and dielectric
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erﬂ:/r/e_p}( Typical Results after CMP

Via Diameter = 80 microns
Field area = nitride and via liner = oxide

Optical Microscope SEM

RTI x1.00k

RTI x2.50k 20.0um

Source: RTI International, Inc.
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eﬁﬁeﬁ( TSV Reveal

Process module following completion of device layers on front side

TSV must be exposed to make contact and/or continue patterning next
layers (RDL) from wafer backside.

Various integrations are viable with combinations of backgrind, etch,
selective CMP, or non-selective CMP.

« Some approaches require 2 or 3 steps of CMP

Examples from two alternative integrations
» Reveal Using Non-selective CMP

 Reveal CMP Following Si Etch

NCCAVS TFUG/CMPUG 30
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eﬁﬁeﬁ( Process Flow

I
— [

() (d)

Process flow for Si interposer with TSVs: (a) TSV etch, isolation layer, plating, and via CMP,
(b) Frontside multi-level metallization, (c) Wafer thinning and TSV reveal, (d) Backside
metallization.

Source: RTI International, Inc.
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entrepix Backgrind for Substrate Thinning

Backgri in Si ' ’ i
ackgrind stops in Si before reaching TSV’s Carrier Mount

* TSV wafers mounted face
down on carrier wafers

Backgrind

« TSV wafers thinned using
backgrind stopping approx
3-15um before hitting TSVs

* Reveal CMP performs dual
_ function of removing grind
Carrier Wafer damage layer and remaining
bulk Si then exposing center
conductor of TSV’s



entrepix Non-Selective CMP Reveal

Expose & Planarize TSVs

Several exposed materials
Single crystal silicon
Oxide (or other liner)
Barrier metal

Copper

Carrier Wafer



en‘tfém Architecture and Upstream Processes

Need to polish far enough into TSVs to remove
rounded profile at base of vias

- CMP required to at Iéast this depth

" Si.N, :
' 3 e Insufficient
Removal at

W / ThIS Depth ,

RTI x5.00k

Source: RTI International, Inc.



Starting to clear Mostly clear Finished

Customized CMP process was
used to planarize final surface
comprised of Si+Ox+barrier+Cu

Source: RTI International, Inc.
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enﬁém Completed Interposer with TSV

Completed interposer test structure: large via diameter, 100um thickness.

Structure has 2 frontside metal layers (4um Cu) and 1 backside metal.

Bottom surface received
TSV reveal polish

Source: RTI International, Inc.
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entrepix Selective Reveal CMP after RIE

After backgrind, bulk Si removed by an etch process

« Can be dry etch or wet etch, but must be
highly selective to oxide

* Installed equipment already available

* Proceeds until 2-5um of encased via “bumps” protrude

Layer of dielectric is usually deposited to protect field areas
Primary goal of CMP is to planarize bumps and expose the Cu cores

One benefit of this approach is to reduce total CMP polish time
» Less sensitive to uniformity issues

» Faster throughput and lower CMP process cost
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entrepix CMP Summary

« CMP Requirements Related to Packaging

June 2016

High stock removal rates are often needed for acceptable throughput
Topography demands are much less stringent than CMOS interconnect
Defectivity is defined at a different level

Lower costis a MUST

Wafer thinning and TTV control are alternate types of planarization

New slurries may be needed for new materials, esp. for interposers and
flexible electronics

Advanced packaging and TSV applications have huge volume potential,
but still struggling to define preferred integration that can meet cost
expectations
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enﬁeﬁ( 2016 Drivers for SiP Adoption

Miniaturization

« Form factor and functionality density (package height, footprint)
« Heterogeneous technology integration
« Digital, RF, analog, power, and sensor integration
« Mixed process technology
« System performance
* Noise reduction and higher speed
« System flexibility, features, and configurability
» Total system cost reduction
« Package/device cost

« Development cost

 Time to market

Adapted from source: Techsearch International
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eﬁﬂém Thank You

Many thanks to the following people:

Paul Feeney, Terry Pfau, Paul Lenkersdorfer, Donna Grannis (Entrepix)

Customers, colleagues and analysts for various contributions

For additional information, please contact:

Robert L. Rhoades, Ph.D.
Entrepix, Inc.
Chief Technology Officer
+1.602.426.8668
rrhoades@entrepix.com
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