

Limitations and Challenges to Meet Moore's *Law*

Advanced Product and Technology Development Maydan Technology Center

Sung Kím

sung_kim@amat.com

Sept 10, 2015

State of the art:

- cleanroom
- toolsets
- metrology
- analysis
- module development
- test & reliability

Introduction

Why do we scale?

*****Limitations and Challenges:

- ***** Patterning

5nm is the end of Moore?

Feasible down to 5nm?

- Press Release Albany New York: IBM, Samsung & Globalfoundries; working 7nm transistors.
- ISSC conference early 2015:
 - Head of Samsung R&D keynote: 'no fundamental difficulties until 5nm'
- Intel conference call: 10nm pushed out another year (3 year cadence vs. 2 year) due to:
 - "The lithography is continuing to get more difficult as you try and scale, and the number of multi-pattern steps you have to do is increasing," - Brian Krzanich
 - Looking at another round of 14nm and 'other means' to improve performance.
 - 'other means' : Skylake vs. Broadwell

Scaling by node

Beyond Mobility. The Internet of Things

SAMSUNG

Source: Business Intelligence, The Internet of Everything: 2014

Industry Technology Scaling Trend

Logic ahead by one gen (2 years - 10nm ~ foundry 7nm)

Notable Speculation on Timing

- 10nm for next gen phone in 2017.
- Earliest possible EUV insertion: 7nm (to what extent?)
- Next earliest transistor architectural change (GAA?): 7nm.

Why do we scale?

Performance Speed – though physical area is shrinking

Power Heat & Battery Life: – though features per area is increasing

Cost

What are we scaling for?

Notable players: Apple Amazon Google Microsoft Facebook

Interesting Factoids:

- Huge carbon footprint / large % electrical consumption
- over 38% of large companies expected to exceed IT capacity within 18 months - IoT
- the average life of a data center is 9 years

Scaling on a macro level?

Challenges:

Performance:Switching /transmission; speed,
data integrity/back up; security.Power :For every 100 watts
10% of world's electrical demand?Cost:Scaling requirements

What's Inside.

- less about internal server speed
- More about applications
- And external challenges

The current tool of choice for data collection:

Scaling challenges for next nodes

Scaling challenges for next nodes

Source: Kuhn SSDM Japan 2009

Superior Electrostatic Control to Enable Gate Scaling

Improving Gate Control

Key Challenges

- Nanowire formation
- Bottom isolation
- Nanowire spacer
- Stressor material
- High k metal gate formation
- S/D & Extension doping

Reducing body width and increasing number of gates enables gate length scaling

Parasitic Resistance: Increasing Contribution of R_{contact}

Contact resistance reduction

Challenges:

- Increasing parasitic resistance comes from R_{contact}.
- R_{plug} dominant resistance at ≤10nm CD with conventional W

Parasitic resistance components of FinFET. Source: Synopsis Simulation

Technology Solutions

- Interface Engineering
- Schotky Barrier Height reduction (III-V)
- Silicidation
- Low Resistivity Contact Fill
- Contact Area Scaling

Parasitic Capacitance Fix solutions for Power Reduction

Parasitic capacitance reduction

ESL PMD ox CNT PMD Oxide

Scaling Challenges:

- Gate to drain capacitance increases with Lg scaling
- Parasitic RC for scaled device increases

Technology challenges:

- Lower k ~ 4 for spacer and ESL
- Selectivity for removal of ESL
- Narrow contact, narrow stressor

Transistor Challenges

Solve Transistor Technology Challenges

- Gate control improvement 3D scaling
- Contact Rc materials engineering for R_{contact}
- Parasitic capacitance reduction materials engineering

*With continued scaling: electro static resistance and parasitic capacitance control

Multi-patterning vs. EUV

Patterning

EUV challenges:

- Potential (imaging) is good
- Source power:
 - wafers per hour
 - Cost of Ownership
- Mask technology:
 - Manufacturing cost & short lifetime
 - High consumable cost:
 - Pellice
 - Blanks
 - Ability to inspect
- Photo-chemicals...
- Infrastructure

Patterning:

Source: ASML Investor day London 2014

Challenges:

- Number of mask counts doubled from 28nm to 14nm node
- Multi patterning continues
- Overlay specifications now are the challenge

Patterning Technology Roadmap

EUV Patterning technology readiness?

- Multi-Patterning enables Scaling but...
- SAXP brings it's set of challenges: cost & complexity
- Overlay / Patterning: technical challenges

Summary

- Scaling:
 - After FinFET transition Logic continues to scale faster than Foundry/Mobile
 - ▶ Even with new node cadence from 2 to 2.5~3 years (10nm intro).
 - Vertical integration/ architectural changes like GAA & 3DNand
 - With Materials engineering
- Transistor:
 - Electrostatic challenges while integrating vertical 3D structures
 - Parasitic Capacitance
- Patterning:
 - Multi-pass patterning being used due to the uncertainty of EUV introduction.
 - ▶ EUV: economics & infrastructure obstacles earliest 7nm timing
 - SAXP: cost & materials/architectural engineering challenges

