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2 Introduction

“*Why do we scale?

“*Limitations and Challenges:
« Transistor
+ Patterning
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5nm Is the end of Moore?
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Feasible down to 5nm?

* Press Release Albany New York: IBM,
Samsung & Globalfoundries; working 7nm
transistors.

* |SSC conference early 2015:
 Head of Samsung R&D keynote: ‘no
fundamental difficulties until 5nm’

| ' ' ' ' ' ' ' ' ' ' ' ’ ' ' " ' ' ' ' * Intel conference call: 10nm pushed out another
year (3 year cadence vs. 2 year) due to:
* "The lithography is continuing to get more
difficult as you try and scale, and the

number of multi-pattern steps you have to
do is increasing," - Brian Krzanich

Jiang & Tierney
1507 TNRIDOG

* Looking at another round of 14nm and

‘other means’ to improve performance.
* ‘other means’ . Skylake vs. Broadwell
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Scaling by node

Scaling by Year
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Beyond Mobility. The Internet of Things

20,000,000
18,000,000
16,000,000

Connected Cars
14,000,000

Wearables
12,000,000

Connected TVs
10,000,000
8,000,000 Internet of Things

Tablet
6,000,000 s

4,000,000 Smartphones

2,000,000

Source: Business Intelligence, The Internef

Industry Technology Scaling Trend
= Logic ahead by one gen (2 years - 10nm ~ foundry 7nm)
Notable Speculation on Timing

10nm for next gen phone in 2017.

Earliest possible EUV insertion: 7nm (to what extent?)

Next earliest transistor architectural change (GAA?): 7nm.
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Why do we scale?
“Performance

Speed
—though physical area is shrinking

“*Power
Heat & Battery Life:
—though features per area is increasing

+wCost
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What are we scaling for?
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Notable players: Interesting Factoids:
Apple e Huge carbon footprint /large % electrical
Amazon consumption
Google « over 38% of large companies expected to
Microsoft exceed IT capacity within 18 months - IoT
Facebook * the average life of a data center is 9 years
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Scaling on a macro level?

Performance:

Power :

Cost:

Challenges:

Switching /transmission; speed,
data integrity/back up; security.
For every 100 watts

10% of world’s electrical demand?
Scaling requirements

External Use

What's Inside.

- less about internal server speed

- More about applications

- And external challenges
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The current tool of choice for data collection:

From PC to mobility — getting smaller
And now...
And next mmmp Internet of Things.

Apple iIPhcne Tire Ling ornd Evolulion
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Scaling challenges for next nodes

11

Logic area, nm?

:

100

:

Logic Area

Extrapolation

A5nm  32nm

For 10-5nm

22nm  14nm  10nm nm S5nm

limited by electrostatic control at the
fransistor with no further innovations.
Additional constrained by added mask costs
for multi-patteming solutions

Slower logic area scaling for =10nm

- Both gate and interconnect pitches need to be relaxed

Material/Architecture/Process innovation with
multi-pass pattering solutions and design
innovative solutions required

Constant node to node logic area scaling
o Slower gate pitch scaling =» Faster Interconnect pitch
scaling
o Faster gate pitch scaling =2 Slower Interconnect pitch
scaling
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Scaling challenges for next nodes

Changes in Scaling

THEN NOW
+ Scaling drove down cost » Scaling drives down cost
+ Scaling drove performance » Materials drive performance
* Performance constrained * Power constrained
* Active power dominates » Standby power dominates
* Independent design-process » Collaborative design-process

Classic transistor . . . .
Materials and process innovations required

eSiGe anthanides I
. 5 ctinides L
' Stress liner HK-first 45nm 32nm 22nm 16nm 10nm
HKMG
HK-last . .
HKMG .
‘ L "

130nm 90nm 65nm 45nm 32nm

Source: Kuhn SSDM Japan 2009

2 Si nanowire channel —

I
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—
{
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Superior Electrostatic Control to Enable Gate Scaling

Improving Gate Control
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Key Challenges

 Nanowire formation

e Bottom isolation

* Nanowire spacer

e Stressor material

* High k metal gate formation
» S/D & Extension doping

Wl Gate "
PMOS I Contact

Metal Gate

i

LE hirasial % Normalizes the channel
A= = Whoaytox length for the capacitor
N Eoxide coupling in the transistor

n =# of gates

Reducing body width and increasing number
of gates enables gate length scaling
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Parasitic Resistance: Increasing Contribution of R

14

contact

Contact resistance reduction

Challenges:
e Increasing parasitic resistance comes from R

R g dominant resistance at <10nm CD with

conventional W

contact*

400

OR_contact FINFET

300 1 OR_S/D
BR_extension

200 1 /

100 H

Parasitic Rs (Q-um)

0 g

14nm 10nm 7nm

Parasitic resistance components of FInFET.
Source: Synopsis Simulation

Technology Solutions
* Interface Engineering

e Schotky Barrier Height reduction (111-V)

« Silicidation
* Low Resistivity Contact Fill

e Contact Area Scaling

External Use

@)

APPLIED
MATERIALS -



Parasitic Capacitance Fix solutions for Power Reduction

Parasitic capacitance reduction
2015 [TH]

Dominance of Parasitics

TECHNOLOGY Resistance Breakdown
SYMPOSIUM —

2500
Parasitic Network Dominance 2000 —|

704:
500

: |

Capaatance Breakdown

400
75“7

257

PMD Oxide

Remaining
PMD ox

Total Resistance
5
8

Intrinsic Transistor

RC
P_E' Idcl x Vdd
EZE!"Vd:j'I_Ileak' Vaa '

Source: A. Thean

Total Capacitance
=
o

Technology challenges:
Scaling Challenges: * Lower k ~ 4 for spacer and ESL
« Gate to drain capacitance increases with Lg scaling « Selectivity for removal of ESL
 Parasitic RC for scaled device increases o Narrow contact, narrow stressor
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Transistor Challenges

Node (nm) 14 10 B 7 3]
Lg (nm) 20 m 16 _ﬂ 12 9
Architecture FinFET Gate All Around (GAA)
S/D Stressor SICP (n) / SiGe (p) Higher doping (n)/ Ge-rich SiGe (p)
Metal Gate ALD Metal, W fil Multi VT by MG Material Change

» Solve Transistor Technology Challenges
= Gate control improvement — 3D scaling
= Contact Rc — materials engineering for R act

= Parasitic capacitance reduction — materials engineering

*With continued scaling: electro static resistance and parasitic capacitance control
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Multi-patterning vs. EUV

Pitch

1 Spacer etch Process impacts on
CD Variability

2 Spacer etch ‘

Vlﬁl After Fin etch

. Source: IBM, SPIE’15
a, B, v spaces are distinct

14nm node Chipworks

Post Litho (ref) Post Etch

Source: P. Naulleau, Berkeley Lab
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Patterning

Figure 1: EUW Throughput vs. Stepper Power Source vs. Uptime
2000 -
- EUV challenges:
| Improving Tool Awailability [Uptimse)
1500 | el i  Potential (imaging) is good
o~ « Source power:
- « wafers per hour
i ; » Cost of Ownership
g "™ « Mask technology:
E o e Manufacturing cost & short lifetime
o0 * High consumable cost:
ao0 o Imaroving Power Saurce o Pellice
30-40% Ui Helps Throughput . BlankS
=) (@ e mmn « Ability to inspect
Yo m . @ @ s we me  w  we m % @ e m * Photo-chemicals...
e N i = = e Infrastructure
Source: ASML, 5IG Estimates
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Patterning:

19

Number of mask counts doubled from 28nm to 14nm node
Multi patterning continues
Overlay specifications now are the challenge

WEUV W ArF-i ArF mKrF mi-line
100 80 8
" , ——DRAM
E 20 DRAM i Logic
o 60 Es
g s
& 60 g \
s o BE
g 40 23
E 20 g,z 1 = 4 sili
Z I 5, nm = 4 silicon atoms
u T T L T 1
0 0 2014 2015 2016 2017 2018 2019 2020
2H 2M 1H 1M 1L
MNode
Source: ASML Investor day London 2014
Challenges:

External Use

@l

APPLIED
MATERIALS .«



Patterning Technology Roadmap

= N3Z 2014 2016
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Via AE

2018

2020

SAKP

SAGP

SAXP

SAQP

EUV Patterning technology readiness?
= Multi-Patterning enables Scaling but...
=  SAXP brings it's set of challenges: cost & complexity

= Qverlay / Patterning: technical challenges
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Summary
= Scaling:

» After FINFET transition Logic continues to scale faster than Foundry/Mobile
» Even with new node cadence from 2 to 2.5~3 years (10nm intro).

» Vertical integration/ architectural changes — like GAA & 3DNand

» With Materials engineering

= Transistor:

21

» Electrostatic challenges while integrating vertical 3D structures
» Parasitic Capacitance

Patterning:

» Multi-pass patterning being used due to the uncertainty of EUV introduction.

» EUV: economics & infrastructure obstacles — earliest 7nm timing
» SAXP: cost & materials/architectural engineering challenges
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