Limitations and Challenges to Meet Moore's Law

Advanced Product and Technology Development
Maydan Technology Center

Sung Kim
sung_kim@amat.com

Sept 10, 2015
State of the art:
• cleanroom
• toolsets
• metrology
• analysis
• module development
• test & reliability
Introduction

Why do we scale?

Limitations and Challenges:
- Transistor
- Patterning
5nm is the end of Moore?

Always Moore
Number of transistors in CPU*
Log scale

MOORE’S LAW DEFINED

Faith no Moore
Selected predictions for the end of Moore’s Law

<table>
<thead>
<tr>
<th>Cited reason:</th>
<th>Economic limits</th>
<th>Technical limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gordon Moore, Intel</td>
<td>1995</td>
<td>2005</td>
</tr>
<tr>
<td>G. Dan Hutcheson, VLSI Research</td>
<td>1996</td>
<td>2003</td>
</tr>
<tr>
<td>Isaac Chuang, IBM Research</td>
<td>2000</td>
<td>2020</td>
</tr>
<tr>
<td>Paolo Gargani, Intel</td>
<td>2003</td>
<td>2021</td>
</tr>
<tr>
<td>Lawrence Krauss, Case Western, and Glenn Starkman, CERN</td>
<td>2004</td>
<td>approx. 2060</td>
</tr>
<tr>
<td>Gordon Moore, Intel</td>
<td>2005</td>
<td>2015-25</td>
</tr>
<tr>
<td>Michio Kaku, City College of NY</td>
<td>2011</td>
<td>2021-22</td>
</tr>
<tr>
<td>Robert Colwell, DARPA; (fmr) Intel</td>
<td>2013</td>
<td>2020-22</td>
</tr>
<tr>
<td>Gordon Moore, Intel</td>
<td>2015</td>
<td>2025</td>
</tr>
</tbody>
</table>

Sources: Press reports; The Economist, Economist.com
Feasible down to 5nm?

- Press Release Albany New York: IBM, Samsung & Globalfoundries; working 7nm transistors.

- ISSC conference early 2015:
 - Head of Samsung R&D keynote: ‘no fundamental difficulties until 5nm’

- Intel conference call: 10nm pushed out another year (3 year cadence vs. 2 year) due to:
 - "The lithography is continuing to get more difficult as you try and scale, and the number of multi-pattern steps you have to do is increasing," - Brian Krzanich
 - Looking at another round of 14nm and ‘other means’ to improve performance.
 - ‘other means’: Skylake vs. Broadwell
Scaling by node

Industry Technology Scaling Trend
- Logic ahead by one gen (2 years - 10nm ~ foundry 7nm)

Notable Speculation on Timing
- 10nm for next gen phone in 2017.
- Earliest possible EUV insertion: 7nm (to what extent?)
- Next earliest transistor architectural change (GAA?): 7nm.
Why do we scale?

- **Performance**
 - Speed
 - though physical area is shrinking

- **Power**
 - Heat & Battery Life:
 - though features per area is increasing

- **Cost**
What are we scaling for?

Notable players:
Apple
Amazon
Google
Microsoft
Facebook

Interesting Factoids:
• Huge carbon footprint / large % electrical consumption
• over 38% of large companies expected to exceed IT capacity within 18 months - IoT
• the average life of a data center is 9 years
Scaling on a macro level?

Challenges:
Performance: Switching /transmission; speed, data integrity/back up; security.
Power: For every 100 watts 10% of world’s electrical demand?
Cost: Scaling requirements

What’s Inside.
- less about internal server speed
- More about applications
- And external challenges
The current tool of choice for data collection:

- From PC to mobility – getting smaller
- And now…
- And next → Internet of Things.
Scaling challenges for next nodes

- Limited by electrostatic control at the transistor with no further innovations.
- Additional constrained by added mask costs for multi-patterning solutions.
- Slower logic area scaling for ≤10nm. Both gate and interconnect pitches need to be relaxed.

- Material/Architecture/Process innovation with multi-pass pattering solutions and design innovative solutions required.

- Constant node to node logic area scaling:
 - Slower gate pitch scaling ➔ Faster interconnect pitch scaling
 - Faster gate pitch scaling ➔ Slower interconnect pitch scaling
Scaling challenges for next nodes

Changes in Scaling

THEN
- Scaling drove down cost
- Scaling drove performance
- Performance constrained
- Active power dominates
- Independent design-process

NOW
- Scaling drives down cost
- **Materials** drive performance
- **Power** constrained
- **Standby power** dominates
- **Collaborative design-process**

> 45nm Materials
> Additional Materials at <45nm

Source: Kuhn SSDM Japan 2009

Materials and process innovations required

Source: Kuhn SSDM Japan 2009

Source: Applied Materials Investor Day 2014

3D Structure

- Si nanowire channel

Source: Applied Materials
Superior Electrostatic Control to Enable Gate Scaling

Improving Gate Control

Key Challenges
- Nanowire formation
- Bottom isolation
- Nanowire spacer
- Stressor material
- High k metal gate formation
- S/D & Extension doping

Reducing body width and increasing number of gates enables gate length scaling

\[\lambda = \frac{1}{n \cdot \varepsilon_{oxide}} \sqrt{\frac{e_{channel}}{W_{body} t_{ox}}} \]

\(n = \# \text{ of gates} \)

\(\lambda \) Normalizes the channel length for the capacitor coupling in the transistor.
Parasitic Resistance: Increasing Contribution of R_{contact}

Contact resistance reduction

Challenges:
- Increasing parasitic resistance comes from R_{contact}.
- R_{plug} dominant resistance at ≤ 10nm CD with conventional W

Technology Solutions
- Interface Engineering
- Schotky Barrier Height reduction (III-V)
- Silicidation
- Low Resistivity Contact Fill
- Contact Area Scaling

Parasitic resistance components of FinFET. Source: Synopsis Simulation
Parasitic Capacitance Fix solutions for Power Reduction

Parasitic capacitance reduction

Scaling Challenges:
- Gate to drain capacitance increases with Lg scaling
- Parasitic RC for scaled device increases

Technology challenges:
- Lower k ~ 4 for spacer and ESL
- Selectivity for removal of ESL
- Narrow contact, narrow stressor
Transistor Challenges

<table>
<thead>
<tr>
<th>Year</th>
<th>2014</th>
<th>2016</th>
<th>2018</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node (nm)</td>
<td>14</td>
<td>10</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Lg (nm)</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>9</td>
</tr>
</tbody>
</table>

- **Architecture**: FinFET
- **S/D Stresor**: SiCP (n) / SiGe (p)
- **Metal Gate**: ALD Metal, W fill

Gate All Around (GAA)

- Higher doping (n) / Ge-rich SiGe (p)
- Multi VT by MG

- **Solve Transistor Technology Challenges**
 - Gate control improvement – 3D scaling
 - Contact Rc – materials engineering for R_{contact}
 - Parasitic capacitance reduction – materials engineering

With continued scaling: electro static resistance and parasitic capacitance control
Multi-patterning vs. EUV

Process impacts on CD Variability

Source: IBM, SPIE’15

EUV

Source: P. Naulleau, Berkeley Lab
Patterning

EUV challenges:

- Potential (imaging) is good
- Source power:
 - wafers per hour
 - Cost of Ownership
- Mask technology:
 - Manufacturing cost & short lifetime
 - High consumable cost:
 - Pellice
 - Blanks
 - Ability to inspect
- Photo-chemicals…
- Infrastructure
Patterning:

Challenges:
- Number of mask counts doubled from 28nm to 14nm node
- Multi patterning continues
- Overlay specifications now are the challenge

Source: ASML Investor day London 2014
EUV Patterning technology readiness?

- Multi-Patterning enables Scaling but…
- SAXP brings it’s set of challenges: cost & complexity
- Overlay / Patterning: technical challenges
Summary

- **Scaling:**
 - After FinFET transition Logic continues to scale faster than Foundry/Mobile
 - Even with new node cadence from 2 to 2.5~3 years (10nm intro).
 - Vertical integration/ architectural changes – like GAA & 3DNand
 - With Materials engineering

- **Transistor:**
 - Electrostatic challenges while integrating vertical 3D structures
 - Parasitic Capacitance

- **Patterning:**
 - Multi-pass patterning being used due to the uncertainty of EUV introduction.
 - EUV: economics & infrastructure obstacles – earliest 7nm timing
 - SAXP: cost & materials/architectural engineering challenges