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Contact Schematics 
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Contact Resistance Limits 

•  Quantum conductance for ballistic transport,   
G0 = 2e2/h 

•  Ab initio calculations predict contact resistivities 
≥ 24.2 kΩ�nm2 for a side-contacted graphene 
layer* 

•  For near-ballistic transport and optimum metal-
CNT interfaces, contact resistance can be 
minimized for device functionalization 
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*Matsuda et al., J. Phys. Chem. C 2010, 114, 17845   



DFT/Green’s Function 
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Matsuda et al., J. Phys. Chem. C 2010, 114, 17845   



Tunneling 
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Schottky barrier (metal-
semiconducting SWCNT) 

Tunneling barrier (metal-MWCNT) 

Yamada et al., J. Appl. Phys. 107, 044304 (2010)   
Svensson and Campbell,  J. Appl. Phys. 110, 11110 (2011) 
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Conductive – Atomic Force Microscopy (C-AFM) 
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C-AFM Results 

Current map Surface topography 

•  Current through every single CNT sensed for fixed V 
•  Locate precisely individual CNT and measure electrical characteristics 
•  Position tip for I-V sweeps 
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Scanning Spreading Resistance AFM 
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M. Fayolle et al., Microelectronic Engineering 88, 833 (2011)  



In Situ Nanoprobing inside SEM 

Tip radius ≤ 50nm 
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Tungsten probe tip 

100 nm 
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Nanoprobing Measurements 
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(c) Constant current through outer probes 
 

(d) 4PP resistance remains constant 

Direct probe 
contact with 
W deposits 

Probes 
interfaced with 
Au electrodes 

CNT 
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RC = 0.49 kΩ 

Voltage [mV] 
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Contact Engineering 

•  Contact Geometry consideration 
– End contact vs. side contact 

•  Joule Heating 
•  E-beam Treatment 
•  Contact Encapsulation 

– Electrode contact deposition 
– Contact area 

•  As-grown interface vs. metal deposition 
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End vs. Side Contacts 
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•  Chemical bonding at end contact 
–  Saturated C-bonds 
–  Conduction modes of graphitic 

structure is unaffected 
–  Interface with concentric walls 

•  Van der Waals bonding at side 
contact 
–  Larger interfacial separation 
–  C-bonds remain unsaturated, 

inhibiting conduction 
–  Interface with outermost wall 

only 



E-beam Irradiation 
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•  Results in a-C depo 
–  Non-conductive 

•  4PP unaffected by 
exposure 

•  Does not affect CNT 

Bachtold et al., Appl. Phys. Lett., 73, 274 (1998)   



E-beam Fused Contacts 
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R ~ 700 Ω 

Wang et al., Adv. Mater. 22, 5350 (2010) 

R ~ 10 kΩ 

(a) 

(b) 



Contact Area Enhancement 
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RC appears to be area independent for contact longer some characteristic length 

    Lan et al.,Appl. Phys. Lett. 92, 213112 (2008) 
 



Tunneling 
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Tunneling barrier (metal-MWCNT) 

Yamada et al., J. Appl. Phys. 107, 044304 (2010)   



Joule Heating 
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•  I-V nonlinearity reduced by stress current 
•  Interfacial gap remains large 
•  Contact resistance ~ few kΩ 



Metal Deposition on Electrode Contacts 
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Au Au 

SiO2 

CNT 

•   CNTs exhibit high contact resistance 
•   CNT contact resistance can be reduced with metal deposition                     

on contacts 

IBID-W 

EBID-W 

EBID: R = 8.51 kΩ 
IBID: R = 7.82 kΩ 



Resistance with & without W-deposited contacts 
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Work Function and Wettability 
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Lim et al., Appl. Phys. Lett. 95, 264103 (2009)  
 



Metal-CNT Contact Encapsulation 
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Liebau et al., Appl. Phys. A 77, 731 (2003)   
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Liebau et al., Appl. Phys. A 77, 731 (2003)   

Metal-CNT Contact Encapsulation 
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Liebau et al., Appl. Phys. A 77, 731 (2003)   

Metal-CNT Contact Encapsulation 



EBID-C + Joule heating 
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Total resistance reduced 
 from 300 kΩ to 116 Ω 

Kim et al.,IEEE Trans Nanotech. 11, 1223 (2012)  

EBID-C deposition at edges 
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As-grown Interface 
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Grainy substrate Smooth substrate 



Measurement	
  Setup	
  

Tip radius ≤ 50nm Rtotal = (Rbundle + RCNT /m + Rp/CNT + Rm )+ RCNT (L)

Parametric 
Analyzer 

 Silicon 

Metal 

36 

1µm 

≡ RC + RCNT (L)

Tungsten probe tip 

100 nm 

LCNT 

R
To
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l  
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RCNT =
4ρLCNT
πDCNT
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Resistance vs. Length 
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Diameter range of probed 
samples: 90 – 100 nm 

ρ (Ω-cm) RC (Ω) 

1.66	
  -­‐	
  1.85	
  	
  	
  	
  	
  	
  	
  
x	
  10-­‐4	
  	
   825 

Ni/Ti (grainy substrate) 

RTotal = RC + RCNT = RC +
4ρ

πDCNT
2 LCNT

RC 



Resistance vs. Length 
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Diameter of probed 
samples: ~50 nm 

ρ (Ω-cm) RC (Ω) 

2.4	
  x	
  10-­‐4	
  	
   388 

RTotal = RC + RCNT = RC +
4ρ

πDCNT
2 LCNT

Ni/Ti (smooth substrate) 

RC 



Resistance measurements for CNT via 
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Nihei et al., (ICSICT), 541-543 (2008)  
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Summary 
•  Metal-CNT contact resistance critically affects device performance, 

but can be engineered to yield desirable outcomes 
•  End-contacted vertical structures typically result in lower contact 

resistance due to strong bonding between edge carbon and surface 
metal atoms 

•  Contact engineering can result in sub-kΩ contact resistance values, 
which still need to decrease considerably before device 
functionalization 

•  Contact resistance can be drastically reduced by Joule heating and 
contact metallization using selection criteria governed by wettability 
metal-CNT work-function difference. 

•  As-grown interface between CNT and underlayer metal can yield 
very low contact resistance under the best growth conditions, such 
as catalyst and underlayer metal depositions without ambient 
adsorbates trapped at the interfaces 
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Landauer (quantum limit)  
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•  2-D surface to 1-D conduction 
 
 
  
 
 

–  Materials and engineering 
independent 

–  λMFP ≥ L 

Tersoff, APL 74, 2122 (1998) 

•  Conservation of momentum 
(Bloch symmetry) violation 
–  Conduction through surface 

scattering 
–  Van der Waals? 

G =
2e2

h
MT


