Metal-Carbon Nanotube Contacts

Patrick Wilhite and Cary Y. Yang

February 20, 2014

Outline

- Introduction: Contact Types and Applications
- Metal-CNT Contact Models
- CNT Nanoscale Probing
- Contact Engineering
- Summary

Outline

- Introduction: Contact Types and Applications
- Metal-CNT Contact Models
- CNT Nanoscale Probing
- Contact Engineering
- Summary

Contact Schematics

Applications

De Volder et al., Science 339, 535-9

Applications

Outline

- Introduction: Contact Types and Applications
- Metal-CNT Contact Models
- CNT Nanoscale Probing
- Contact Engineering
- Summary

Contact Resistance Limits

- Quantum conductance for ballistic transport, $G_0 = 2e^2/h$
- Ab initio calculations predict contact resistivities
 ≥ 24.2 kΩ•nm² for a side-contacted graphene layer*
- For near-ballistic transport and optimum metal-CNT interfaces, contact resistance can be minimized for device functionalization

*Matsuda et al., J. Phys. Chem. C 2010, 114, 17845

DFT/Green's Function

Matsuda et al., J. Phys. Chem. C 2010, 114, 17845

Tunneling

Schottky barrier (metalsemiconducting SWCNT)

Svensson and Campbell, J. Appl. Phys. 110, 11110 (2011)

Tunneling barrier (metal-MWCNT)

Yamada et al., J. Appl. Phys. 107, 044304 (2010)

Outline

- Introduction: Contact Types and Applications
- Metal-CNT Contact Models
- CNT Nanoscale Probing
- Contact Engineering
- Summary

Conductive – Atomic Force Microscopy (C-AFM)

C-AFM Results

- Current through every single CNT sensed for fixed V
- Locate precisely individual CNT and measure electrical characteristics
- Position tip for *I-V* sweeps

Scanning Spreading Resistance AFM

M. Fayolle et al., Microelectronic Engineering 88, 833 (2011)

In Situ Nanoprobing inside SEM

Nanoprobing Measurements

Contact Resistance Extraction

Outline

- Introduction: Contact Types and Applications
- Metal-CNT Contact Models
- CNT Nanoscale Probing
- Contact Engineering
- Summary

Contact Engineering

- Contact Geometry consideration
 End contact vs. side contact
- Joule Heating
- E-beam Treatment
- Contact Encapsulation
 - Electrode contact deposition
 - Contact area
- As-grown interface vs. metal deposition

End vs. Side Contacts

- Chemical bonding at end contact
 - Saturated C-bonds
 - Conduction modes of graphitic structure is unaffected
 - Interface with concentric walls

- Van der Waals bonding at side contact
 - Larger interfacial separation
 - C-bonds remain unsaturated, inhibiting conduction
 - Interface with outermost wall only

E-beam Irradiation

E-beam Fused Contacts

Center for Nanostructures

Wang et al., Adv. Mater. 22, 5350 (2010)

Contact Area Enhancement

R_c appears to be area independent for contact longer some characteristic length

Lan et al., Appl. Phys. Lett. 92, 213112 (2008)

Tunneling

Tunneling barrier (metal-MWCNT)

Yamada et al., J. Appl. Phys. 107, 044304 (2010)

Joule Heating

• I-V nonlinearity reduced by stress current

anta Clara University

- Interfacial gap remains large
- Contact resistance ~ few kΩ

Metal Deposition on Electrode Contacts

- CNTs exhibit high contact resistance
- CNT contact resistance can be reduced with metal deposition on contacts

Santa Clara University

Center for Nanostructures

26

Resistance with & without W-deposited contacts

Work Function and Wettability

28

Metal-CNT Contact Encapsulation

Metal-CNT Contact Encapsulation

30

Metal-CNT Contact Encapsulation

31

EBID-C + Joule heating

Kim et al., IEEE Trans Nanotech. 11, 1223 (2012)

Contact Engineering

- Contact Geometry consideration
 End contact vs. side contact
- Joule Heating
- E-beam Treatment
- Contact Encapsulation
 - Electrode contact deposition
 - Contact area
- As-grown interface vs. metal deposition

Contact Engineering

- Contact Geometry consideration
 End contact vs. side contact
- Joule Heating
- E-beam Treatment
- Contact Encapsulation
 - Electrode contact deposition
 - Contact area
- As-grown interface vs. metal deposition

As-grown Interface

Grainy substrate

Smooth substrate

Measurement Setup

Resistance vs. Length

Resistance vs. Length

Resistance measurements for CNT via

Nihei et al., (ICSICT), 541-543 (2008)

Outline

- Introduction: Contact Types and Applications
- Metal-CNT Contact Models
- CNT Nanoscale Probing
- Contact Engineering
- Summary

Summary

- Metal-CNT contact resistance critically affects device performance, but can be engineered to yield desirable outcomes
- End-contacted vertical structures typically result in lower contact resistance due to strong bonding between edge carbon and surface metal atoms
- Contact engineering can result in sub-kΩ contact resistance values, which still need to decrease considerably before device functionalization
- Contact resistance can be drastically reduced by Joule heating and contact metallization using selection criteria governed by wettability metal-CNT work-function difference.
- As-grown interface between CNT and underlayer metal can yield very low contact resistance under the best growth conditions, such as catalyst and underlayer metal depositions without ambient adsorbates trapped at the interfaces

Acknowledgements

Toshishige Yamada Anshul Vyas

Phillip Wang Jeongwon Park

Jessica Koehne

Landauer (quantum limit)

• 2-D surface to 1-D conduction

$$G = \frac{2e^2}{h}MT$$

- Materials and engineering independent
- $\lambda_{MFP} \ge L$
- Conservation of momentum (Bloch symmetry) violation
 - Conduction through surface scattering
 - Van der Waals?

Tersoff, APL 74, 2122 (1998)