

Implement smell and taste with nanosensors

Zhiyong Li, HP Labs Feb. 20, 2014

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Acknowledgement

Mineo Yamakawa, Steven Barcelo, Gary Gibson, Ansoon Kim, Huei-Pei Kuo, SY Wang, Zhang-Lin Zhou, Richard Friedrich, Stan Williams

Collaborators: Prof. Peidong Yang/UC Berkeley Prof. Wei Wu/USC Prof. Inkyu Park/KAIST Prof. Yong Chen/UCLA Dr. Alec Talin/Sandia National Lab

A mobile sensing solution in a 'Tricorder'

Portable Fast Accurate Reliable Low Cost

Raman Spectroscopy

Photon-Matter interaction

1/100,000,000 photons are Raman scattering Require bulky, expensive instrument

Raman Spectrometer 85 Years Later

C.V. Raman, 1928

2013

Surface-enhanced Raman scattering

Raman scattering enhanced by localized surface plasmon on nanostructure

SERS Enhancement Factor $\propto |E(\omega)|^2 |E(\omega')|^2$

also approx. to ~ $|E|^4$ Electromagnetic field induced EF: 10⁶ - 10¹²

SERS will enable single molecule level detection with compact devices

Two Approaches to Nano-scale

Advantage: low cost, close packing of NP possible.

Disadvantage: Random, difficult to produce long range order and uniform structure.

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Advantage: Uniformity over large area

Disadvantage: difficult to obtain nm spacing for ultrahigh enhancement.

Top-down meets self-assembly

— the leap from stochastic to deterministic SERS structures

Acc.V Spot Magn Det WD 1 µm

Hybrid nanostructure to mimic "Venus Fly Trap" -- Polymer Finger + Metal Nanotips

(b)

9 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Advantages of nanofinger structures

- Leverage advantages from both top-down and bottom-up approaches No need of costly critical dimension control.
- Easy scale-up for large area uniformity and reliable hot spots Nanoimprinting.
- Micro-capillary driven "finger" closing Easy for fluidic interface, no power nor complicated controls needed.
- Molecule self-limiting of the gap sizes, as small as sub-nm Physical limit of the smallest separation manufacturable, hence strongest coupling effect.
- Active molecule trapping by the fingers Molecular tweezer with build-in sensing functionality.

Inexpensive Nanochips Fabrication Process

11 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Sensor Systems		Total # of Olfactory Receptor Cells	Total Olfactory Epithelium Surface Area	Receptor Area Density
	Bloodhound (the most sensitive animal on land)	4 billion	380 cm ²	~10 million/cm ²
	Human Nose	12 million	10 cm ²	~1 million/cm ²
	Nanofingers (man-made SERS sensor)	~1 billion	1 cm ²	~1 billion fingers/cm ²

Technology Advantages

Demonstration of Melamine Sensing

Melamine contamination in milk, 300,000 victims in China 2008

Max. amount in infant formula (FDA): 1 mg/kg (1part per million)

Melamine Sensing Results

Melamine in whole milk or infant formula

Dialysis method:

Filtration method:

© Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Demonstration of Pesticide Sensing

Chlropyrifos, is a **neurotoxin**, **carcinogen**, once popular pesticide used worldwide, and the residue can be found in vegetables, fruits, etc.

EPA regulation: 0.1 parts per million on citrus fruits

Demonstration of 'Chemical Barcode' for Authentication

Different molecules as **"chemical barcode"** based on their specific fingerprints on Raman spectrum

- Mix special marker(s) in product at trace levels
- Detect with SERS
- Real-time authentication
- Remote monitoring/reporting

Future is around the corner!

Data analysis, storage, networking as cloud service to government, enterprise, consumers

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. HP Confidential

