Efficient electromagnetic and multiphysics simulation - from nanomaterials to macro devices

Mike Hook
Vector Fields Software
Aim

• Review the EM and multiphysics simulation tool, Opera

• Give an overview of its utility
 – In both nano-scale and macro-scale devices

• Introduce a new capability in the software
 – Magnetron simulation
But first…

Vector Fields Software

• **Who we are**
 - part of Cobham plc, a UK aerospace company

• **What we do**
 - Provide electromagnetic design software, consultancy and application expertise

• **When**
 - Founded 1984 as a spin out from the UK Rutherford Appleton lab
 • Aim of commercializing the EM finite element software developed at RAL

• **Where**
 - UK (main office) - Oxford, US office - Chicago
 - Distributors worldwide
Opera

- Multiphysics simulator - EM / thermal / stress
 - Static, harmonic and transient
 - Coupled motion
 - 2D / 3D Finite element solver modules
 - GUI based Modeller and Post-Processor
 - Circuit coupling
 - Built-in circuit editor and simulator
 - System coupling
 - To Simulink®
- Optimizer
- CAD import/export

Solvers
- TOSCA, ELEKTRA, SCALA, CARMEN, SOPRANO, TEMPO, DEMAG, QUENCH, MULTIPHYSICS

Modeller
Pre-Processor
Post-Processor

ELECTROMAGNETICS
CIRCUITS
THERMAL
STRESS
Applications

- Mainly static/low frequency:
 - Motors and Generators
 - Actuators and Sensors
 - Transformers
 - MRI / NMR
 - Magnetic Shielding
 - NDT Equipment
 - Magnetic Levitation
 - Induction heating
 - Signatures
 - X-Ray tubes
 - Electron Lithography
 - Particle Accelerators
 - Ion Sources
 - Magnetrons
 - Lightning threat
 - Lightning strike

- Users in universities, research labs and commercial organizations
 - Customer base ~1/3 each North America, Europe, RoW
Typical Opera application area – MRI

• **Opera simulation tasks**
 - Magnet design
 • High quality fields $\sim 1 \times 10^6$ or better
 - Screening design
 • Wide dynamic range
 - $\sim 10^5$ - a few tesla to less than 1 gauss
 - Quench mitigation
 • Highly non-linear heat capacity
 • Rapid propagation of temperature front
 • Fast rate of change of current
 - Stress analysis
 • Lorentz forces from induced eddy currents
 - Can damage the coils and structural components
Nanoparticles for drug delivery

- **Many drugs have high toxicity**
 - Aim to target the drug
 - lowers whole body dose and unwanted side effects
- **Can conceive of several types of targeting**
 - Design the drug to be specific
 - For example recognize antigens or receptors expressed only by the tumour cells
 - Design the delivery system to concentrate the dose in the required location
- **For the latter, use magnetic particles**
 - Typically iron oxide
 - Add a functionalized coating and load with the drug
 - Direct and retain in required location by a magnetic field gradient
Nanoparticles for drug delivery

- **Issue - particles tend to agglomerate**
 - If unchecked can lead to embolism
 - Two causes
 - Surface effects and remanent magnetism
 - Remedy the former using a surfactant coating
 - For the latter need to ensure that the remanent magnetism is zero

- **Core material cannot be ferromagnetic**
 - Always non-zero remanence

- **Paramagnetism generally too weak**

- **Fortunately particle size gives the solution**
Nanoparticles for drug delivery

- **If particles are small enough**
 - $<\sim 100\text{nm}$ diameter

- **No long-range order**
 - Energy required to flip spin states $< \text{thermal energy available at room temperature}$
 - A bulk ferromagnetic material appears to be paramagnetic
 - But with much larger magnetization
 - Super paramagnetic
 - Particle locomotion and retention practicable

- **Currently being modelled in Opera**
 - Forces on particles
 - Motion in viscous fluid

Nanoparticles for hyperthermal therapy

- An alternative or complement to drug therapy
- Target the location of lossy magnetic particles
 - Using field gradient
- Apply a time-varying field
 - Temperature of the particles rises
 - Mainly hysteresis loss
 - Cell death at ~43C
- Most phases are amenable to modelling in Opera
 - Particle locomotion
 - Retention
 - Power dissipation
 - Temperature change
Space charge simulation in Opera

- **Modelling of particle beams**
- **Fully relativistic simulation with**
 - Electrostatic fields
 - Magnetic fields
 - Beam self-magnetic fields
 - External magnetic fields
 - Space charge
 - Emission current
 - Dielectric charging
- **Fast and accurate**
 - Not a PIC code

* courtesy of Thin Film Consulting, Longmont, Colorado, USA
Nanostructures as particle emitters

- **Emission relies on field effect**
 - High field gradients
 - Emission from cold cathodes
 - Model as Fowler-Nordheim or Schottky emitters
 - Maintain adequate mesh quality around the tip
Nanostructures as particle emitters

- **Simple arrays can be represented physically**
- **Practical displays require very large arrays**
 - These can also be simulated
 - Typically use unit cell and appropriate EM boundary conditions
 - Particle reflections modelled by secondary particle generation
Space charge and particle analysis

- **Approaches to analysis**
 - Analytic methods
 - Generally, accurate if reasonable simplifications can be made
 - Restricted to a limited set of geometries, materials etc
 - Numerical methods
 - Allow complex geometry and can capture material behaviour - especially non-linearity
 - Can give additional physical insight

- Two common approaches to numerical modelling
 - PIC
 - Accurate, but computationally intensive
 - Particle tracking
 - Accurate, less computationally demanding - faster
Plasma emitter

- **Provides capability to simulate magnetron sputtering**
 - Self-consistent magnetron plasma simulation
 - Arbitrary geometry, electric and magnetic configurations
 - Particle, electrostatic and magnetostatic solutions
 - Compatible with the standard Optimizer package

- **Developed in association with Thin Film Consulting**
Plasma emitter

- **Simulations provide**
 - Electrostatic and magnetostatic potentials and fields
 - Charge density
 - Particle tracks, beam parameters and profiles
 - Momenta, energy, TOF, current etc

- **Allows evaluation of**
 - Target erosion profile
 - Target utilization
 - Deposition profile
 - Power deposition and thermal load
 - Losses to walls and structure
Magnetron simulation sample results comparison

- Validation against several different magnetron designs
 - Teer Coatings Ltd.
 - Utilization
 - Simulated 35.73%
 - Measured 35.30%

Plasma electrons above the target

Erosion profile - measured and simulated

Sputtered particle distribution at the substrate
Magnetron simulation sample results comparison

- **Validation against several different magnetron designs**
 - Colorado Concept Coatings LLC.
 - Utilization
 - Simulated 25.90%
 - Measured 26.44%

Erosion profile – measured and simulated

Ar ion beam profile at the substrate

Sputtered particle distribution at the substrate
Magnetron coater simulation

- **Simulations are computationally efficient**
 - Allows simulation of coaters
 - Open and closed configurations
 - Balanced and unbalanced magnetrons
Acknowledgements

- Thin Film Consulting, Longmont, Colorado, USA
 - Software validation

- Teer Coatings Ltd., Miba Coating Group, Worcestershire, UK
 - Device specifications and measured data

- Colorado Concept Coatings LLC, Loveland, Colorado, USA
 - Device specifications and measured data
Finally

• **Opera applications, general**
 - operafea.com

• **Opera space-charge applications**
 - charged-particle-devices.com