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Nanoparticle generation using 
sputtering plasmas 
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HiPIMS – an important theme 
for some years. 

Moving Ionization Zones 

• Nb discharge, peak ~ 200 A 
• reduction of image exposure time 

gives immediate clues on 
rotational speed  ~ 104 m/s 

3 A. Anders et al., J. Appl. Phys. 111 (2012) 053304 
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Streak image sequence, 20 µs sweep time 
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A. Anders et al., J. Appl. Phys. 111 (2012) 053304 



“The black dust was so extremely 
light as to rise like a cloud in the air, 
so as sometimes to be visible near 
the top of the room; I concluded that 
it could not be the metal itself, but 
probably the calx [oxide], ….I was 
confirmed in this opinion by finding 
that this black dust collected from a 
brass chain would not conduct 
electricity…” (J. Priestley, 1775) 

Perhaps the first observation of 
nanoparticles 

5 J. Priestley, The History and Present State of Electricity, 3rd ed., London, 1775;   
A. Anders, IEEE Trans. Plasma Sci. 31 (2003) 1052. 



Starting Point:  
Plasma-Assisted Deposition of Oxide Films 
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AZO, 605 nm,  
18 Ω/ 

ITO, 140 nm,  
7.9 Ω/ 

Solar 
spectrum 

    

R. J. Mendelsberg, et al., J. Physics D 44 (2011) 232003. 
Interesting for energy 
related applications: 
•Transparent in visible and 
near infrared ranges 
•High electrical 
conductivity 

•In203:Sn02 (ITO) 
•ZnO:Al (AZO) 
•SnO2:F  (FTO) 
•ZnO:Ga (GZO) 

Other metal oxides of interest: 
• VO2 : thermochromic material: Metal-to-insulator transition (MIT) at 68 °C 
• TiO2 : Wide band-gap semiconductor, catalysis applications 
• WO3 : electrochromic material 



From Films to Nanoparticles and Nanocomposites 

Localized Surface Plasmon Resonance 
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Resonance: frequency of field is equal to 
plasma frequency of free electrons 

Resonance is size-dependent 

Electric field 
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Metal vs. TCO Nanoparticles as Plasmonic Materials  



Some Applications of Nanostructured Oxides 
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Visible light 

Solar heat 
(infrared radiation) 

Ultimate Goal:  
independent switching in 
the visible and infrared 
ranges 

Photovoltaic and Photocatalytic 
devices 

H. A. Atwater and A. Polman, Nat. Mater. 9 (2010) 205. 

Smart Windows 



Approach: Terminated Cluster Growth 

10 Source: Mantis Deposition LTD 



Terminated Cluster Growth Setup 
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Nanoparticle generator integrated in a sputtering process chamber: 
option to combine nanoparticles and thin film in devices 



Nanoparticle Generator 
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video 

Source: Mantis Deposition LTD 



Effect of Density of Nucleation and Growth 

Increased collision rate increases number and size and nanoparticles. 
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The nanocrystals size and production 
rate can be varied by controlling a 
number of parameters including: 
• Sputtering gas flow rate 
• Aggregation zone pressure 
• Position of the target in the 

aggregation zone 
• Sputtering power 

Vanadium  
target 



Effect of Argon and Oxygen Flows  
on Nanoparticle Formation 
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C. Clavero, et al., J. Phys. D: Appl. Phys. 46 (2013) 362001. 

Ar flow,  p = 120-1050 mTorr 
in aggregation zone 

Even very small amounts of 
oxygen affect the outcome greatly. 
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7   0.175 sccm O2 
6   0.15 sccm O2 
5   0.125 sccm O2 
4   0.1 sccm O2 
3   0.075 sccm O2 
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Effect of Oxygen on Nanoparticle Size and Rate 

C. Clavero, et al., J. Phys. D: Appl. Phys. 46 (2013) 362001. 

Vanadium target,  50 sccm Ar flow (const.) 

 heterogeneous nucleation is much more effective than homogenous nucleation 
 there is a very pronounced parameter window of effective oxide nanoparticle formation 



Why Vanadium Oxide? 

VO2 is a thermochromic material 
VO2 nanocrystals are difficult to synthesize by solution chemistry 
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High temperature 
rutile phase 

(metallic) 

Low temperature  
monoclinic phase 

 (insulating) 

68 °C 



Vanadium Oxide: Very Complicated Phase Diagram 

17 
C. H. Griffiths and H. K. Eastwood, J. Appl. Phys. 45, (1974) 2201. 

this is the desired phase 
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RBS: Checking the Nanoparticle Composition 

C. Clavero, et al., J. Phys. D: Appl. Phys. 46 (2013) 362001. 
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Control of Morphology and 
Crystal Structure by Annealing 

C. Clavero, et al., J. Phys. D: Appl. Phys. 46 (2013) 362001. 
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From Nanoparticles to Nanocrystals 
Optimum thermal treatment (375°C < T < 500°C)  

 VO2 nanoCRYSTALS  

20 

40 60 40 60

 

 
I (

ar
b.

 u
.)

2 Theta (deg.)

   As deposited
(amorphous VO2)

(210) (220)

(211)

After thermal treatment
     (crystalline VO2)

 

 

2 Theta (deg.)

(011)

C. Clavero, et al., J. Phys. D: Appl. Phys. 46 (2013) 362001. 



temperature at measurement 

annealing temperature 

Spectral Response: Demonstrate Switching 

Wavelength (nm) Wavelength (nm) 

C. Clavero, et al., J. Phys. D: Appl. Phys. 46 (2013) 362001. 
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Spectral Response: Checking Change in Transmission 

greatest optical switching happens here 



Hysteresis of the Transition Temperature  
as a Function of Annealing 

23 C. Clavero, et al., J. Phys. D: Appl. Phys. 46 (2013) 362001. 



Hysteresis of Phase Transition 

at λ= 1500 nm 



Summary & Conclusions 

1. Oxide nanocrystals can have plasmonic properties; 
depend on free carrier concentration and size 

2. Especially interesting are those that show insulator-to-
metal transition, such as thermochromic VO2 

3. Demonstrated Terminated Cluster Growth as a synthesis 
method for VO2 nanoparticles  

4. There is a pronounced optimum of oxygen partial 
pressure (flow) for oxide nanoparticle synthesis 

1. even little oxygen promotes heterogeneous 
nucleation 

2. too much oxygen poisons the target and reduces rate 

5. Demonstrated transition from nanoparticles to 
nanocrystals with optimum annealing temperature ~ 
400°C as judged by maximum switching in the infrared 
(1500 nm) 
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Outlook 

1. Use pulse sputtering  we have seen significant rate increases 
2. Use in-situ annealing to obtain nanocrystals 
3. Use multi-element targets and gases 
4. Embed nanoparticles/crystals in a matrix and make devices 
5. Scale to a linear system for large area 
6. …. 
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