

NCCAVS Joint Users Group Technical Symposium "Nanomaterials for Energy, Biomedical, and Electronic Devices" In Conjunction with the NCCAVS 35th Annual Equipment Exhibition

Nanoparticle generation using sputtering plasmas André Anders^{*} and César Clavero Plasma Applications Group Lawrence Berkeley National Laboratory *Presenter. email: aanders@lbl.gov February 20, 2014

materials

miiii

ELECTROSTUTICS CORP.

characterization

plasmas

HiPIMS – an important theme for some years. Moving Ionization Zones

- Nb discharge, peak ~ 200 A
- reduction of image exposure time gives immediate clues on rotational speed → ~ 10⁴ m/s

250 ns 25 µs 10 µs 100 ns 5.0 μs 50 ns 2.5 µs 1.0 us 10 ns

0.5 µs

5 ns

A. Anders et al., J. Appl. Phys. 111 (2012) 053304

Streak image sequence, 20 µs sweep time

Perhaps the first observation of nanoparticles

"The black dust was so extremely light as to rise like a cloud in the air, so as sometimes to be visible near the top of the room; I concluded that it could not be the metal itself, but probably the calx [oxide],I was confirmed in this opinion by finding that this black dust collected from a brass chain would not conduct electricity..." (J. Priestley, 1775)

J. Priestley, The History and Present State of Electricity, 3rd ed., London, 1775; A. Anders, IEEE Trans. Plasma Sci. **31** (2003) 1052.

Starting Point: Plasma-Assisted Deposition of Oxide Films

Interesting for energy related applications:
Transparent in visible and near infrared ranges
High electrical conductivity

In₂0₃:Sn0₂ (ITO)
 ZnO:Al (AZO)
 SnO₂:F (FTO)
 ZnO:Ga (GZO)

Other metal oxides of interest:

- VO₂ : thermochromic material: Metal-to-insulator transition (MIT) at 68 °C
- TiO₂ : Wide band-gap semiconductor, catalysis applications
- WO₃ : electrochromic material

From Films to Nanoparticles and Nanocomposites

Metal vs. TCO Nanoparticles as Plasmonic Materials

Some Applications of Nanostructured Oxides

H. A. Atwater and A. Polman, Nat. Mater. 9 (2010) 205.

Approach: Terminated Cluster Growth

Terminated Cluster Growth Setup

Nanoparticle generator integrated in a sputtering process chamber: option to combine nanoparticles and thin film in devices

Nanoparticle Generator

Effect of Density of Nucleation and Growth

The nanocrystals size and production rate can be varied by controlling a number of parameters including:

- Sputtering gas flow rate
- Aggregation zone pressure
- Position of the target in the aggregation zone
- Sputtering power

Increased collision rate increases number and size and nanoparticles.

Effect of Argon and Oxygen Flows on Nanoparticle Formation

Effect of Oxygen on Nanoparticle Size and Rate

→ heterogeneous nucleation is much more effective than homogenous nucleation
 → there is a very pronounced parameter window of effective oxide nanoparticle formation

C. Clavero, et al., J. Phys. D: Appl. Phys. 46 (2013) 362001.

Why Vanadium Oxide?

VO₂ is a thermochromic material

VO₂ nanocrystals are difficult to synthesize by solution chemistry

Vanadium Oxide: Very Complicated Phase Diagram

C. H. Griffiths and H. K. Eastwood, J. Appl. Phys. 45, (1974) 2201.

RBS: Checking the Nanoparticle Composition

C. Clavero, et al., J. Phys. D: Appl. Phys. 46 (2013) 362001.

From Nanoparticles to Nanocrystals

Spectral Response: Demonstrate Switching

C. Clavero, et al., J. Phys. D: Appl. Phys. 46 (2013) 362001.

Spectral Response: Checking Change in Transmission

Hysteresis of the Transition Temperature as a Function of Annealing

C. Clavero, et al., J. Phys. D: Appl. Phys. 46 (2013) 362001.

Hysteresis of Phase Transition

Summary & Conclusions

- 1. Oxide nanocrystals can have plasmonic properties; depend on free carrier concentration and size
- 2. Especially interesting are those that show insulator-tometal transition, such as thermochromic VO_2
- 3. Demonstrated Terminated Cluster Growth as a synthesis method for VO_2 nanoparticles
- 4. There is a pronounced optimum of oxygen partial pressure (flow) for oxide nanoparticle synthesis
 - 1. even little oxygen promotes heterogeneous nucleation
 - 2. too much oxygen poisons the target and reduces rate
- Demonstrated transition from nanoparticles to nanocrystals with optimum annealing temperature ~ 400°C as judged by maximum switching in the infrared (1500 nm)

Outlook

- 1. Use pulse sputtering \rightarrow we have seen significant rate increases
- 2. Use in-situ annealing to obtain nanocrystals
- 3. Use multi-element targets and gases
- 4. Embed nanoparticles/crystals in a matrix and make devices
- 5. Scale to a linear system for large area
- 6. ..