Technology and Economic Considerations for High Volume HBLED Lithography Manufacturing

Manish Ranjan

Vice President, Marketing Advanced Packaging/Nanotechnology

Topics for Discussion

- Market Momentum
- Key Lithography Considerations
- Technology and Economic Considerations
- Summary

HBLED Market Momentum

(LED Lighting Only Accounts for Small Portion of Worlds Lighting)

HBLED Market Momentum (Semi Market Perspective)

Highlights

- HBLED industry will follow similar manufacturing path as established semiconductor market segment
- Intense focus on technology and productivity enhancement will reduce cost thereby driving demand

Number of Components Per Circuit Moore's Law Illustration

Key Lithography Challenges

Highlights

Ultratech

- Challenges during photolithography process include fine resolution exposure for PSS and metal pad layers, alignment for rough epi layers and warped wafer processing
- Use of 1X technology offers significantly superior technical and economic solutions for HBLED manufacturing

LED Device Fabrication Requires Multiple Lithography Process Steps

Key Lithography Challenges

Ultratech

Key Lithography Challenges (Photolithography Process: PSS Layer)

Ultratech

Highlights

- Patterned Sapphire Substrate (PSS) technology is used to enhance the light extraction efficiency
- Transition to fine resolution PSS necessitates use of projection lithography technology

Transition to PSS Substrates Requires Use of Projection Lithography Technology

Key Lithography Challenges (Photolithography Process: Metal Pad Layer)

Ultratech

Mask Aligner Performance Projection Lithography Performance

Key Lithography Challenges (Photolithography Process: Metal Pad Layer)

Ultratech

Classic Current Finger Design

Advanced Current Finger Design for Maximum Light Extraction

Highlights

- Advanced current spreading finger layout with reduced width will significantly improve the light output
- Use of projection lithography meets the imaging requirements without any impact to product yield

Key Lithography Challenges (Photolithography Process: VLED)

VLED Illustration

Ultratech

Key Lithography Challenges (Imaging Performance)

1X LENS ILLUSTRATION

1x Lens Highlights

Ultratech

 Robust 1X lens design with low numerical aperture for large depth of focus for maximum process flexibility

REDUCTION STEPPER LENS

Risks with Reduction Lens

 Narrow depth of focus from a high numerical aperture system is not suited for warped LED substrate

Key Lithography Challenges (Alignment Performance)

Highlights of Off-Axis

Alignment System

Ultratech

• Production-proven alignment for thick resist applications. Both top-side and off axis alignment systems use pattern recognition for operational flexibility

High Brightness LED with "Rough" Anti-reflective Layer

Secondary Alignment Solution

• Target recognition is a concern for certain process layers. Production proven unique off axis alignment solution for certain process levels

Key Lithography Challenges (Warped Wafer Handling)

Highlights

Ultratech

- Generates focus map of entire wafer before exposure
- Determines local tilt and applies corrections during exposure
- User can add, delete or move mapping points from the GUI

Grid Focus Alignment Illustration

Technology and Economic Considerations (PSS Production)

Highlights

 Tools with Warped Wafer Handling Capabilities have demonstrated robust production performance for leading edge PSS geometry

Technology and Economic Considerations (Chip Production)

Brightness Curve for Current Spreading Layer Width

Performance Comparison

Technology and Economic Considerations (Yield Comparison for Display Chips)

Technology and Economic Considerations (Yield Comparison for Power Chips)

Technology and Economic Considerations (Pay Back Period and Return on Investment)

Highlights

 1x Projection tools enable cost effective LED production and significant operational cost savings (>10M) over the useful life of equipment

Cost of YieldConsumable Cost

Cost of Replacement Mask
Initial Investment Cost

EVC Comparison

Significant yield savings result in a past pay back period (~20 weeks)*

Economic Value Considerations

(New Product Introduction Drives Superior COO)

Highlights

Ultratech

- •Ultratech offers a cost-effective, production proven, 1x projection tool with better alignment, better yields and better ROI
 - Recent LED adoption for backlighting has pushed customers towards stepper adoption
 - Significant momentum in Asia market after introduction of Sapphire product
 - Sapphire provides smallest footprint stepper with a cost effective technology upgrade solution

Repositioning Legacy Product for HBLED Market Has Gained Considerable Momentum

Summary

Ultratech offers

- Market specific lens design for thick resist applications
 - Technology readiness and volume production capability for current & future HBLED product offering

1990's Late 2000's 2010+

HBLED Adoption Timeline