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C@EEAG CdTe Solar Cell
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CdTe is a very good choice
for a thin film solar material.

CdTe has a nearly ideal
bandgap for the solar
spectrum. Potential
efficiency is very high at
29%.

CdTe has a high absorption
coefficient for light allowing
for thinner films.

CdTe can be deposited very
quickly achieving 50:50
stoichiometry. Being able to
do this step fast and at low
cost is one of the reasons for
First Solar’s success.
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c@EAG Cost of Solar

Lately there have been many news stories about
the supremacy of silicon solar cells and various
thin film aspirants falling by the wayside.

Cost of silicon Is often given as the reason at
less than $20/kg.

Silicon Is not winning because of material cost.

Silicon Is succeeding because of manufacturing
Costs.

First Solar has low materials costs, low
deposition costs, low framing cost, low
manufacturing costs.
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'EAG CdTe Layer Structure
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« CdTe grains should be as
large as possible, extending
completely through the film
to minimize grain
boundaries.

« 50:50 CdTe has limited
conductivity. Cu is added as
a p-type dopant which
improves conductivity.

« 50:50 CdTe as-grown is
relatively small grained and
has many defects/charge
trap sites. A Cl treatment
leads to larger grains and
seems to passivate many
charge trap sites.
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ysis of CdTe
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While Cu improves conductivity,
add too much and it degrades
the CdS heterojunction and
decreases shunt resistance.

Some researchers are looking
at other ways to enhance CdTe
conductivity.

If CdTe can be made ‘off-ratio’,
It can be made p-type or n-type.

Recent work has shown that
defects can be reduced,
conductivity enhanced, and the
need for doping and chloride
treatment eliminated.

However it is difficult to
consistently achieve a non-
stoichiometric ratio.
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* Recent work by Razykov et al [1] has shown the
desirable large grain structure can still be grown
and resistance can be kept low for Cd:Te ratios
of 0.86 and 1.1.

* The chloride treatment necessary for 50:50 is
not needed.

* These are the driving forces to create and
control non-stoichiometric ratio CdTe.

1. T.M. Razykov, N. Amin, M.A. Alghoul, B. Ergashev, C.S. Ferekides, Y. Goswani,
M.K. Hakkulov, K.M. Kouchkarov, K. Sopian, M.Y. Sulaiman and H.S. Ullal,
“Effect of the composition on physical properties of CdTe absorber layer fabricated
by chemical molecular beam deposition for use in thin film solar cells”, J. Appl.

Phys. 112, 023517 (2012).
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#)EAG CdTe Phase Diagram
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‘@EAG Analytical Laboratory Challenge

For the analytical laboratory, our challenge is to
accurately and reproducibly measure Cd:Te
ratio.

That means we need analysis techniques with
good accuracy, and good precision.

Accuracy can often be achieved by using a good
standard. We use a Bridgeman grown single
crystal CdTe reference.

Very high precision can be achieved with LEXES
for composition.

Ratio changes with depth can be observed by
SIMS.
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Low Energy X-ray Emission Spectrometry

LEXES



67€AG Physics of the Process
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C’) EAG LEXES: Instrumentation
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C’) %) EAG LEXES: Theory/Background

« Sample is probed using a beam of mono-energetic
electrons

— Electron energies ranging from 0.2keV to 10keV can
be used

— Adjusting electron energy affects sampling depth
* Depths from 1nm to 500nm can be probed
e Spots as small as 30um can be analyzed

« Characteristic X-rays are produced
— Same X-rays as measured during EDS

« X-rays are detected/separated using Wavelength
Dispersive Spectrometers (WDS)
— Higher resolution of WDS resolves interferences

— Higher sensitivity allows the measurement of dopants and
very thin films (<2nm)
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&) EAG Elements That Can Be Analyzed
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Into Quantitative Concentrations

c@ EAG Conversion of LEXES X-ray Intensity

To convert the X-ray intensity (Peak-Background)
Into absolute concentration or dose, we must
correct for the following:

* Energy loss by the electrons as they penetrate
the matrix,

« Efficiency of X-ray production at each depth, I.e.
electron energy, and

* Probabillity of the X-ray escaping the matrix from
the depth of its production.
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C@ EAG 50A ALO, Deposited by ALD

Standard Cycle Short Cycle
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%RSD =1.53% %RSD =7.31%

Avg. Al Dose = 1.78E16 atoms/cm? Avg. Al Dose
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‘@EA G LEXES for CdTe

Model for electron interaction and X-ray
emission from CdTe has been developed. As

a result we can:

* Determines that Cd:Te ratio to within 0.1
at%

« Calibrated vs. CdTe single crystal.

 Determines differences in Cd:Te ratio to
within 0.01 at%.
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C@ EAG LEXES Results

e Here we see 4 LEXES
measurements from 4 locations

Location | Cd/Te Ratio on a sample.
1 0.950  The maximum difference in the
2 0.962 ratio between locations is 0.018
3 0.968 or 1.9%.
4 0.956

Average 0.958

Std. Dev. 0.008
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Secondary lon Mass Spectrometry

SIMS
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C@EEAG SIMS Technique
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c@ EAQG SIMSfor CdTe Composition Profiling

SIMS is well know for trace element profiling
with high sensitivity.

Why use SIMS for matrix level profiling?
Short answer: Speed

With a proper standard, SIMS accuracy Is good
and depth resolution is excellent.

Precision during the profile is similar to LEXES.
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‘@ EAQG CdTe Ratio Analysis by SIMS
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SIMS profiles provide Cd and Te composition variation at different depths.
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‘@EAG Summary

« CdTe ratio control is an interesting concept that
appears to hold promise for increased efficiency
at lower cost.

* The challenge for an analytical laboratory is to
measure small differences in composition with
high accuracy and precision.

« Composition needs to be measured both
laterally and through-thickness.

« LEXES and SIMS provide effective
measurements meeting analytical requirements
for accuracy and precision.
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