Depth Profiling of Organic Photovoltaic and OLED Materials by Cluster Ion Beams

J.S. Hammond¹, S. N. Raman¹, S. Alnabulsi¹, N. C. Erickson² and R. J. Holmes²

1. Physical Electronics, 18725 Lake Drive East, Chanhassen, MN. *2. University of Minnesota, Minneapolis, MN.

Challenges for Organic Electronics Research

Efficiencies are based on optimum band matching and the physical dispersions of components

- Work functions at discrete interfaces e.g. metal electrodes
- Diffusion lengths of charge carriers
- Device lifetimes influence customer acceptance and profit margins
 - Atmospheric contamination (H_20 , O_2) degrade chemistry
 - Flexible designs challenge encapsulation technologies
 - Breakdown mechanisms are not well understood

□ Chemical and molecular specific depth profiling is desired

- Depth resolution of a few nm with high sensitivity
- Cluster ion depth profiling interleaved with XPS and TOF-SIMS may be solution

Why use Depth Profiling for Organic Electronics?

New "nanotechnology" products use extremely thin organic and polymer structures

- OLEDS
- Energy conversion materials and fuel cell membranes
- Fabrication process producing molecular gradients can result in significant differences in efficiency
- Product degradation can result from molecular oxidation and molecular diffusion
- Spectroscopy with a nano-scale depth of analysis (XPS and TOF-SIMS) needed for surface and depth profiling characterization of molecular composition and diffusion

Comparison of XPS and TOF-SIMS

	XPS	TOF-SIMS
Probe Beam	Photons	lons
Analysis Beam	Electrons	lons
Spatial Resolution	10 µm	0.10 µm
Sampling Depth(Å)	5-75	1-10
Detection Limits	0.01atom %	1ppm
Information Content	Elemental Chemical	Elemental Chemical Molecular

Excellent

Quantification

www.phi.com

Std. needed

XPS System Schematic

Scanning Micro Focused X-ray Source

Typical XPS Spectra Poly(ethylene terephthalate)

Unique Polymer "Fingerprint" Identification Using TOF-SIMS Spectra

XPS shows identical spectra for both polymers

Damage Accumulation Indicated by XPS

500 eV Ar⁺ Sputter

Damage is observed.

No Damage Observed by XPS

10keV C₆₀⁺ Sputter

No damage observed.

Altered Volume & Sub-surface Damage

Residual C_{60} sputter damage is mostly removed with the next C_{60} impact event.

→ Non-C₆₀ sputter sources result in the accumulation of sub-surface damage.

Molecular Dynamics: Ar₉₀₀₀⁺ GCIB on PS/Ag

0.5eV/Ar atom

The permission of the pictures is by courtesy of Professor Zbigniew Postawa, Jagiellonian University (Poland); L. Rzeznik, B. Czerwinski, B.J. Garrison, N. Winograd and Z. Postawa, "Microscopic Insights into the Sputtering of Thin Polystyrene Films on Ag{111} Induced by Large and Slow Ar Clusters", J. Phys. Chem C 112 (2008) 521.

Single Layer, Graded Composition OLED structure

Previous Graded Composition OLED Research

APPLIED PHYSICS LETTERS 97, 083308 (2010)

Highly efficient, single-layer organic light-emitting devices based on a graded-composition emissive layer

Nicholas C. Erickson¹ and Russell J. Holmes^{2,a)} ¹Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA ²Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA

Graded Composition Structures Overview

- Graded Electron and Hole Transport Materials (ETM and HTM) with a green phosphorescent emitter
- 100% HTM at the Anode and 100% ETM at the Cathode

Result

- At 600 cd/m²
 - Peak external quantum efficiency $\eta_{EQE} = (19.3 \pm 0.4)\%$
 - Corresponding to internal quantum efficiencies approaching 100%
 - Peak power efficiency $\eta_p = (66.5 \pm 1.3) \text{ Im/W}$
- These structures are simple to grow
- But need to confirm the chemistry of these structures is essential

Analytical Technique

Thin film samples were characterized in a PHI VersaProbe II Scanning XPS system equipped with an Ar+ Gas Cluster Ion Beam source for depth profiling

- The GCIB source can be operated
 - With Beam energies from 2.5 kV to 20 kV
 - Cluster size from <1000 to 5000

The XPS system has excellent charge neutralization capability to compensate for differential charging at various interfaces

Structure of the two molecules for OLED

Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) (Hole Transfer Material)

Bathophenanthroline (BPhen) (Electron Transfer Material)

C 1s and N 1s Spectra for TCTA and BPhen

Sample Structure for OLED

GCIB Depth Profile of TCTA:Bphen/SiO₂/Si

GCIB Depth Profile of TCTA:Bphen/SiO₂/Si

GCIB Depth Profile of Bphen:TCTA/SiO₂/Si

GCIB Depth Profile of Bphen:TCTA/SiO₂/Si

N 1s Spectra from GCIB Depth Profile of Bphen:TCTA/SiO₂/Si

Ir Emissive Compound from GCIB Depth Profile of Bphen:TCTA/SiO₂/Si

Composite Multi-layer Inverted Organic Photovoltaic Device

Sample is comprised of various material types: Metal / Polymer / Oxide

PHYSICAL ELECTRONICS A DIVISION OF ULVAC-PHI

Composite – Organic Photovoltaic Multi-layer

20 kV C₆₀ Cluster

- With Compucentric Zalar Rotation™
- Well defined layers
- Consistent sputter speed throughout the multilayer stack

Composite – Organic Photo Voltaic Multi-layer

20 kV Ar₁₅₀₀⁺ Gas Cluster, 13.3 eV/atom

- Poor layer definition
- Large variation in sputter rates

Fabrication Process versus OLED Efficiency

□ Two fabrication processes of small molecular OLED's

- Spin coating (wet process): typically easier fabrication, lower efficiency
- Evaporation has higher efficiency

□ Emissive layers (ELs) studied for high efficiency green OLED's

- Guest
- Bis[5-methyl-7-trifluoromethyl-5H-benzo©(1,5)naphthyridin-6-one]iridium (picolinate) (CF₃BNO)₂IrPLA
- Host
- 4-4'-bis(carbazol-9-y)biphenyl (CBP)
- Wet efficiency 70 Im W⁻¹
- Dry efficiency 21 lm W⁻¹ WHY?

Wet versus Dry Process: XPS Depth Profiles

Fig. 1. XPS elemental depth profiles of emissive layers prepared with thermo-evaporation (dry-process) and spin-coating (wet-process).

 Same Ir composition similar when normalized by film thickness
 Wet process Ir guest has higher concentration at interface relative to dry process
 PHYSICAL ELECTRONICS A DIVISION OF ULVAC PHI

A DIVISION OF ULVAC-PHI

• TOF-SIMS with C₆₀ sputtering shows no change in molecular structure between outer surface spectra and 25 seconds sputtering

• XPS profile with C₆₀ is not a result of molecular decomposition

Wet versus Dry Process: TOF-SIMS Depth Profiles

Fig. 3. ToF-SIMS depth profiles of emissive layers prepared with thermoevaporation (dry-process) and spin-coating (wet-process).

Same Ir composition similar when normalized by film thickness

• Wet process Ir guest has higher concentration at interface relative to dry process PHYSICAL A DIVISION OF ULVAC-PHI
WWW.phi.com

Wet versus Dry Process Model of Efficiencies

Fig. 4. Energy diagram and the route of charge carriers of OLED with EL prepared with (a) wet-process and (b) dry-process. The shade of CBP and (CF₃BNO)₂IrPLA indicates its relative concentration.

- Higher relative guest concentration at HT interface give lower turn-on voltage
- More hole trapping in dry process
- Wet process efficiency is ~ 3.5x higher than dry process

Cluster Ion Source Summary

The Choice of Ion Source for XPS Compositional Depth Profiling Is Application Dependent

Sample Type	Ion Gun Type			
	Ar Monoatomic	C ₆₀ Cluster	Ar Gas Cluster	
Metal	Preferred approach	 Carbide formation 3 - 20 % on reactive metals 	 Slow etch rates Small differential sputtering for some alloys 	
Ceramics	 Differential sputtering and chemical change 	 Ideal Approach on Soda-lime glass Works well on metalloid oxides and conducting oxides: ITO / InGaO Not suitable for transition metal oxides TiO₂ / HfO₂ / WO₃ 	 Slow etch rates Small oxygen loss for some oxides at high acceleration voltages (ITO) Mot suitable for transition metal oxides TiO₂ / HfO₂ / WO₃ 	
Organics Polymers	 Significant Chemical Damage 	 Suitable for Type-II degrading polymers (5 × to 10 × between Polymers and Metal oxides) Some Type-I crosslinking polymer to a depth of a few hundred nanometers 	 Suitable for Type-II degrading polymers (50 × to 100 × between Polymers and Metal oxides) Ideal Approach for Type-I crosslinking polymers, unless an inorganic filler is present 	
Complex Materials	 Sample Dependent 	 Able to maintain sputter speed across layers, with low level damage on Carbon 	 Large variation in sputter rate causes depth resolution problems 	
Semiconductors	 Preferred approach ★★★ 	Carbide formation on reactive metals	 Slow etch rates, variable sputter rates, surface roughening 	

Summary and Conclusions

- Using Ar GCIB depth profiling and XPS we have been able to confirm the graded composition emissive layer structures
- The chemistry of the materials remains unaltered by the Ar cluster ion beam
- Sharp interfaces measured for layered structures
- The depth profile of the Ir from Ir(ppy₃) dopant is clearly observable with a concentration of < 0.04 at. %</p>
- GCIB depth profiling is reliable reproducible and fast for these materials
- C₆₀ provides excellent depth profiling of metal/organics/metal oxides/glass multi-layer structures
- Similar use of C₆₀ and GCIB combined with TOF-SIMS can provide more molecular information

