Depth Profiling of Organic Photovoltaic and
OLED Materials by Cluster lon Beams

J.S. Hammond?!, S. N. Raman?, S. Alnabulsil, N. C. Erickson? and R. J.
Holmes?

1. Physical Electronics, 18725 Lake Drive East, Chanhassen, MN.
*2. University of Minnesota, Minneapolis, MN.

www.phi.com



Challenges for Organic Electronics Research

O Efficiencies are based on optimum band matching and the
physical dispersions of components

— Work functions at discrete interfaces e. g. metal electrodes
— Diffusion lengths of charge carriers
O Device lifetimes influence customer acceptance and profit
margins
— Atmospheric contamination (H,0, O,) degrade chemistry
— Flexible designs challenge encapsulation technologies
— Breakdown mechanisms are not well understood

O Chemical and molecular specific depth profiling is desired
— Depth resolution of a few nm with high sensitivity

— Cluster ion depth profiling interleaved with XPS and TOF-SIMS may
be solution
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Why use Depth Profiling for Organic Electronics?

1 New “nanotechnology” products use extremely thin
organic and polymer structures

— OLEDS
— Energy conversion materials and fuel cell membranes

O Fabrication process producing molecular gradients can
result in significant differences in efficiency

O Product degradation can result from molecular oxidation
and molecular diffusion

 Spectroscopy with a nano-scale depth of analysis (XPS
and TOF-SIMS) needed for surface and depth profiling
characterization of molecular composition and diffusion
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Comparison of XPS and TOF-SIMS
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XPS System Schematic
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Scanning Micro Focused X-ray Source
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Typical XPS Spectra
Poly(ethylene terephthalate)
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Unigue Polymer "Fingerprint” Identification
Using TOF-SIMS Spectra

XPS shows identical spectra for both polymers
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Damage Accumulation Indicated by XPS

500 eV Ar™ Sputter
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No Damage Observed by XPS
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Altered Volume & Sub-surface Damage

15 keV Ga
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Residual C,, sputtg¢r damage is mostly
removed with the nekt C,, impact event. =

Non-Cg, sputter sources result in the
accumulation of sub-surface damage.
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Molecular Dynamics: Argy,," GCIB on PS/AgQ

0.5eV/Ar atom

2.0eV/Ar atom

10eV/Ar atom

Lateral Jet Momentum Transfer Sputtering

The permission of the pictures is by courtesy of Professor Zbigniew Postawa, Jagiellonian University (Poland); L. Rzeznik, B. Czerwinski, B.J. Garrison, N.
Winograd and Z. Postawa, "Microscopic Insights into the Sputtering of Thin Polystyrene Films on Ag{111} Induced by Large and Slow Ar Clusters", J. Phys.
Chem C 112 (2008) 521.
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Single Layer, Graded Composition OLED
structure
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Previous Graded Composition OLED Research

APPLIED PHYSICS LETTERS 97, 083308 (2010)

Highly efficient, single-layer organic light-emitting devices based
on a graded-composition emissive layer

Nicholas C. Erickson' and Russell J. Holmes®®
]Deparrmem of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota
35455, USA

2De'pc;','fr.lf:i":if'.'*zir of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis,
Minnesota 55455, USA
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Graded Composition Structures Overview

J Graded Electron and Hole Transport Materials (ETM
and HTM) with a green phosphorescent emitter

J 100% HTM at the Anode and 100% ETM at the Cathode

J Result
— At 600 cd/m?

* Peak external quantum efficiency ngoe = (19.3 + 0.4)%

— Corresponding to internal quantum efficiencies approaching 100%

* Peak power efficiency n,=(66.5 + 1.3) Im/W
J These structures are simple to grow

] But need to confirm the chemistry of these structures
IS essential
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Analytical Technique

- Thin film samples were characterized in a PHI
VersaProbe Il Scanning XPS system equipped with an
Ar* Gas Cluster lon Beam source for depth profiling

— The GCIB source can be operated
« With Beam energies from 2.5 kV to 20 kV
* Cluster size from <1000 to 5000

J The XPS system has excellent charge neutralization
capability to compensate for differential charging at
various interfaces
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Structure of the two molecules for OLED

o Tris(4-carbazoyl-9-ylphenyl)amine
(TCTA) (Hole Transfer Material)

1 Bathophenanthroline
(BPhen) (Electron Transfer Material)
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C 1s and N 1s Spectra for TCTA and BPhen
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Sample Structure for OLED

75 nm Al

DEVICE

1 nm LiF

100 nm BPhen/TCTA gradient
With Ir (ppy;) dopant

150 nm ITO
Glass
XPS TEST STRUCTURES 100 nm BPhen/TCTA gradient
With and without dopant
100 nm TCTA \1
100 nm BPhen
Silicon Silicon
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GCIB Depth Profile of TCTA:Bphen/SiO,/Si
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GCIB Depth Profile of TCTA:Bphen/SiO,/Si
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GCIB Depth Profile of Bphen:TCTA/SIO,/SI
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GCIB Depth Profile of Bphen:TCTA/SIO,/SI
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N 1s Spectra from GCIB Depth Profile of
Bphen: TCTA/SIO,/SI
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Ir Emissive Compound from GCIB Depth Profile of
Bphen: TCTA/SIO,/SI
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Composite Multi-layer
Inverted Organic Photovoltaic Device

Sample is comprised of various material types: Metal / Polymer / Oxide
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Composite — Organic Photovoltaic Multi-layer
20 kV Cq, Cluster
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® With Compucentric Zalar Rotation™

®* Well defined layers
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Composite — Organic Photo Voltaic Multi-layer

Atomic Concentration (%)

20 kV Arjgo" Gas Cluster, 13.3 eV/atom
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Fabrication Process versus OLED Efficiency

 Two fabrication processes of small molecular OLED’s
— Spin coating (wet process): typically easier fabrication, lower efficiency

— Evaporation has higher efficiency
 Emissive layers (ELs) studied for high efficiency green OLED’s

— Guest
— Bis[5-methyl-7-trifluoromethyl-5H-benzo®©(1,5)naphthyridin-6-one]iridium (picolinate) (CF;BNO),IrPLA

— Host
— 4-4’-bis(carbazol-9-y)biphenyl (CBP)

— Wet efficiency 70 Im W-1
— Dry efficiency 21 Im W1 WHY?
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Wet versus Dry Process: XPS Depth Profiles

EL Interface Substrate
1600 45000
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Fig. 1. XPS elemental depth profiles of emissive layers prepared with
thermo-evaporation (dry-process) and spin-coating (wet-process).

« Same Ir composition similar when normalized by film thickness

« Wet process Ir guest has higher concentration at interface relative to dry process
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* TOF-SIMS with Cg,
sputtering shows no change
in molecular structure
between outer surface
spectra and 25 seconds
Sputtering

« XPS profile with Cg, is not
a result of molecular
decomposition



Wet versus Dry Process:. TOF-SIMS Depth Profiles

EL Interface Substrate
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Fig. 3. ToF-SIMS depth profiles of emissive layers prepared with thermo-
evaporation (dry-process) and spin-coating (wet-process).

« Same Ir composition similar when normalized by film thickness

« Wet process Ir guest has higher concentration at interface relative to dry process
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Wet versus Dry Process Model of Efficiencies
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Fig. 4. Energy diagram and the route of charge carriers of OLED with EL prepared with (a) wet-process and (b) dry-process. The shade of CBP and
(CF3BNO)LIrPLA indicates its relative concentration.

« Higher relative guest concentration at HT interface give lower turn-on voltage
 More hole trapping in dry process
» Wet process efficiency is ~ 3.5x higher than dry process
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Cluster lon Source Summary

The Choice of lon Source for XPS Compositional Depth Profiling Is Application Dependent

lon Gun Type
Sample Type
Ar Monoatomic Cgo Cluster Ar Gas Cluster
Preferred approach Carbide formation 3 - 20 % on reactive Slow etch rates
Metal metals - Small differential sputtering for some alloys *
Differential Ideal Approach on Soda-lime glass Slow etch rates
sputtgrlng and Works well on metalloid oxides and Small oxygen loss for some oxides at high
chemical change conducting oxides: ITO / InGaO acceleration voltages (ITO)
Ceramics ' Yook DADAS
Not suitable for transition metal oxides Not suitable for transition metal oxides
* TiO, / HfO, / WO, - TiO, / HfO, / WO, *
Significant Suitable for Type-Il degrading polymers Suitable for Type-Il degrading polymers
_ Chemical Damage (5% to 10 X between Polymers and (50 X to 100 X between Polymers and Metal
Organics Metal oxides) Ahoh oxides) ****
Polymers - Some Type-I crosslinking polymer to a Ideal Approach for Type-I crosslinking polymers,
* depth of a few hundred nanometers Arsh unless an inorganic filler is present Ao
Sample Dependent Able to maintain sputter speed across Large variation in sputter rate causes depth
Complex ) .
; layers, with low level damage on Carbon resolution problems
Materials Yok *

Semiconductors

Preferred approach

Tk

Carbide formation on reactive metals

X

Slow etch rates, variable sputter rates, surface
roughening *
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Summary and Conclusions

Using Ar GCIB depth profiling and XPS we have been able to
confirm the graded composition emissive layer structures

The chemistry of the materials remains unaltered by the Ar
cluster ion beam

Sharp interfaces measured for layered structures

The depth profile of the Ir from Ir(ppy;) dopant is clearly
observable with a concentration of < 0.04 at. %

GCIB depth profiling is reliable reproducible and fast for these
materials

Cqo Provides excellent depth profiling of metal/organics/metal
oxides/glass multi-layer structures

Similar use of Cy, and GCIB combined with TOF-SIMS can
provide more molecular information
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