Process Integration for 2.5D/3D – A Few Steps from the Summit

Niranjan Kumar
(On behalf of Sesh Ramaswami and Applied Materials TSV team)

Product Marketing Manager,
3D IC TSV/WLP, Strategy
Silicon Systems Group

Event:
Date: June, 2012
Presentation Outline

- Early Engagements to Industry Adoption
 - Years in perspective, 2008-12

- 2.5D/3D TSV Process Flow / Integration
 - Via-Middle process integration
 - Technology extendibility to smaller TSVs
 - Interposer TSV oxide liner and fill window
 - Via-Reveal process integration
 - Making TSVs affordable

- 2.5D Interposer Copper Interconnect
 - Dual damascene wiring segment/solutions
 - Leverage hardware/processes

- Summary

End Markets: Mobile, Network/Telecom, Gaming/Computing
TSV Process Flows

Via-Middle / Via-Reveal
- TSV Etch
- CVD Oxide Liner
- PVD Barrier/Seed
- Copper Plating
- CMP Cu
- Edge Trim
- Temporary Bond
- Grind
- CMP Si
- Dry Recess Etch
- CVD Nitride/Oxide
- CMP Oxide

Up to 400°C Processes

Interposer
- TSV Etch
- CVD Oxide Liner
- PVD Barrier/Seed
- Copper Plating
- CMP Cu
- Edge Trim
- Temporary Bond
- Grind
- CMP Si
- Dry Recess Etch
- CVD Nitride/Oxide
- CMP Oxide

Below 200°C Processes

Via-Last
- Edge Trim
- Temporary Bond
- Grind
- CMP Si
- CVD Nitride/Oxide
- TSV Etch
- CVD Oxide Liner
- Oxide Bottom Etch
- PVD Barrier/Seed
- Copper Plating
- CMP Cu
TSV Via-Middle Characterized Within Integrated Framework

CMP Cu
- Low ILD loss (<10nm)
- Accurate end point and profile control
- Good post-CMP topography

Etch
- TSV profile, low scallop
- Depth uniformity
- High ER / selectivity

CVD Liner
- High step-coverage, film quality inside TSV
- E-test properties, low leakage (V_{bd}), reliability (TDDB), Cu outdiffusion

ECD Cu
- Void-free fill, rate, stability
- Low overburden
- Low Cu pumping- Chem., Grain

PVD CuBS
- Hi step-coverage (Ta, Ti, Cu)
- Gap-fill co-optimization

Via-Middle integration achieved at customer sites, challenges remain with narrow TSVs

All SEMs Source: Applied Materials
Presentation Outline

- **Early Engagements to Industry Adoption**
 - Years in perspective, 2008-12

- **2.5D/3D TSV Process Flow / Integration**
 - Via-Middle process integration
 - Technology extendibility to smaller TSVs
 - Interposer TSV oxide liner and fill window
 - Via-Reveal process integration
 - Making TSVs affordable

- **2.5D Interposer Copper Interconnect**
 - Dual damascene wiring segment/solutions
 - Leverage hardware/processes

- **Summary**
Conformal Oxide Liner and Wide ECD Fill Window (10x100um)

Invia Liner (2.5kA)

Iso TSV (Pitch~80um)

Dense TSV (Pitch~20um)

Wafer Center

Wafer Edge

Step Coverage ~105%

Conformal liner and good fill achieved on wide inspection range

*All SEMs Source: Applied Materials

Silicon Systems Group

External Use / NCCAVS User Groups, 12th June 2012
Presentation Outline

- Early Engagements to Industry Adoption
 - Years in perspective, 2008-12

- 2.5D/3D TSV Process Flow / Integration
 - Via-Middle process integration
 - Technology extendibility to smaller TSVs
 - Interposer TSV oxide liner and fill window
 - Via-Reveal process integration
 - Making TSVs affordable

- 2.5D Interposer Copper Interconnect
 - Dual damascene wiring segment/solutions
 - Leverage hardware/processes

- Summary
Via-Reveal Process Integration Framework

(a) CMP Si
- Improves WIW TTV and WTW repeatability
- Metrology & EP control
- Advanced clean
- Stress relief

(b) Si Recess Etch
- Selectivity, reduced defects
- Etch rate
- Predictive TTV control

(c) CVD Passivation (180°C)
- Stress tuning, Bow
- Seam-free, interfacial adhesion

(d) CMP SiOx
- End-point control
- Tunable topography
- Mechanical integrity of exposed TSVs with dielectric insulation

Optimize clean process for improved CVD film interface

*All SEMs Source: Applied Materials
Presentation Outline

- Early Engagements to Industry Adoption
 - Years in perspective, 2008-12

- 2.5D/3D TSV Process Flow / Integration
 - Via-Middle process integration
 - Technology extendibility to smaller TSVs
 - Interposer TSV oxide liner and fill window
 - Via-Reveal process integration
 - Making TSVs affordable

- 2.5D Interposer Copper Interconnect
 - Dual damascene wiring segment/solutions
 - Leverage hardware/processes

- Summary
Leverage via-middle/Via-reveal processes and hardware for Interposer TSV and dual-damascene fabrication
Summary

- TSV feature size converging near 5x50um at Logic/Foundry/Memory for via-middle and 10x100um for Interposer

- Via-middle/via-reveal integration characterized within integrated framework and collaboration with industry eco-system

- Developments show promise to extend oxide liner, barrier/seed and ECD to smaller size ~2x40um TSVs

- Driving multiple approaches for Interposer interconnect fabrication while leveraging common TSV hardware platform
Turning innovations into industries.