

Mechanical Stresses and Reliability Study of Cu Through-Silicon Via (TSV) Samples Fabricated by SK Hynix vs. SEMATECH using Synchrotron X-Ray Microdiffraction for 3-D Integration and Reliability

A.S. Budiman^{1*}, H.-A. Shin², B.-J. Kim², S.-H. Hwang², H.-Y. Son³, M.-S. Suh³, Q.-H. Chung³, K.-Y. Byun³, Y.-C. Joo², R. Caramto⁴, L. Smith⁴, M. Kunz⁵, N. Tamura⁵

 ¹Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory (LANL), Los Alamos, NM 87545
 ²Dept. Of Materials Science & Engineering, Seoul National University (SNU), Republic of Korea
 ³PKG Development Group, R&D Division, SK Hynix Inc., Republic of Korea
 ⁴SEMATECH, Albany, NY

⁵Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720

*suriadi@alumni.stanford.edu

NCCAVS "3D Packaging", Tue, June 12nd, 2012

Outline

- Background Mechanical Stresses and Reliability/Performance Implications in 3-D Cu TSV Integration Schemes
- The Technique Synchrotron X-Ray Submicron Diffraction (White and Monochromatic Beam)
- Experimental
 - Mechanical Stresses in Cu TSV and Their Potential Impacts on 3-D Interconnect Reliability: SK Hynix vs. SEMATECH
 - Mechanical Stresses in Silicon Surrounding TSV and Their Potential Impacts on 3-D Interconnect Performance as well as Reliability: SK Hynix vs. SEMATECH
- Conclusions & Future Work

Impact to Reliability and Performance of Device

- Thermal stress of TSV \rightarrow Si stress and Cu stress.
- Si stress (residual stress) \rightarrow degradation of device performance.
- Cu stress (thermal stress) \rightarrow mechanical failure of Cu TSV.

Stress of Si : µ-Raman spectroscopy

TSV-induced stress extends about 10 μm in Si
 50 MPa tensile stress in Si after cycling

Lee, *et al.*, TSV 3D Packaging Technology Workshop, 2010

40 MPa tensile stress in Si was developed near Cu TSV after cycling.

Stress of Cu : Laboratory XRD Lack of micron resolution

Diameter 70 μ m , pitch 140 μ m, depth 460 μ m

+ 225 MPa at 200 °C.
- 100 MPa at 25 °C.

Synchrotron X-Ray Sub-micron Diffraction

Deviatoric strain tensor: Small shifts in spot relative positions \rightarrow Crystal deformation at constant volume (~ 1 x10⁻⁴ accuracy)

Laue pattern and energy scanning analysis

Experimental

💠 Sample

Hynix: 20 µm TSV diameter, 90 µm pitch, 90 µm height

SEMATECH: 5.5 µm TSV diameter, 80 µm pitch, 50 µm height

Condition of measurement

- Measurement of stress for : Si, Cu TSV
- Thermal treatment: in situ at 200 °C (SK Hynix)

ex situ post-annealed (200 °C for 1 hour) sample (SK Hynix)

ex situ post-annealed (350 °C for 30 mins) - SEMATECH

Cu Stress State in TSV – SK Hynix - Post Annealed Sample (measure at RT)

Cu Hydrostatic Stress State in TSV – SK Hynix - Post Annealed Sample (measure at RT)

10

Stress Evolution in Cu TSV – SK Hynix

Cu hydrostatic stress

<u>High Tensile in As-Received</u> → Cu RT Grain Growth

 Decreasing hardness \rightarrow Cu stress toward more tensile stress after annealing and R. T. aging.

• Okoro et. al., J. Micromech. Microeng. (2010)

Microstructure change of Cu during annealing leads to <u>tensile stress</u> – SK Hynix

As received

200°C 1hr annealing

13

<u>Compressive</u> Hydrostatic Stress in Cu TSV during Annealing

Cu TSV Protrusions:

- Popping out, bulging out during high-temp processing steps
- Cracking/flaking of dielectrics
 over Cu TSV and open vias to
 above metallization lines

→ Integration issues as well as serious reliability concerns!

Copper expansion can fracture the oxide layer above. (Source: Tezzaron)

Si Stress State in TSV – SK Hynix (Post Annealed)

Y Axis Title

Si Keep-Away Zone:

<u>SK Hynix</u>: 17 μm

→ Reduce as-received Cu TSV high tensile stress!!

Electroplating process? Thermal treatment? Reduce Cu RT grain growth?

- Synchrotron X-ray submicron diffraction (white + monochromatic beam) has proven to be a powerful tool to measure stress states in TSV <u>in situ</u> and while the Cu via is still <u>buried under Silicon</u>
- <u>Cu stress state</u> is mostly in tensile and considerable shear stresses at the post-annealed state:
 - Comparison SK Hynix vs. SEMATECH samples → RT grain growth leads to high tensile stress in the as-received state
 - How to reduce stress-induced reliability/integration → reduce Cu hydro stress in the as-received state
- <u>Stress in Si surrounding Cu TSV</u> was found to follow Cu hydrostatic stress: higher Cu hydrostatic stress → higher Si stress → larger "keep-away zone"
 - Si stress in array of TSV's \rightarrow important for design/layout
 - Stress scanning from the top would be valuable → to optimize layout!

Acknowledgements

Director, Los Alamos National Laboratory (LANL) Laboratory Director's Research Directions (LDRD) Fellowship: LDRD/X93V DOE, Office of Science, Office of Basic Energy Sciences

ADVANCED LIGHT SOURCE (ALS), ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY U.S DOE, OFFICE OF BASIC ENERGY SCIENCES CONTRACT NO (DE-AC02-05CH11231)

THANK YOU!