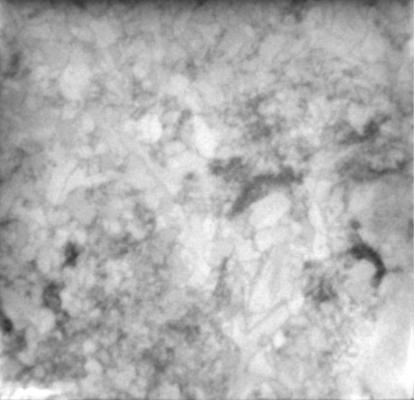
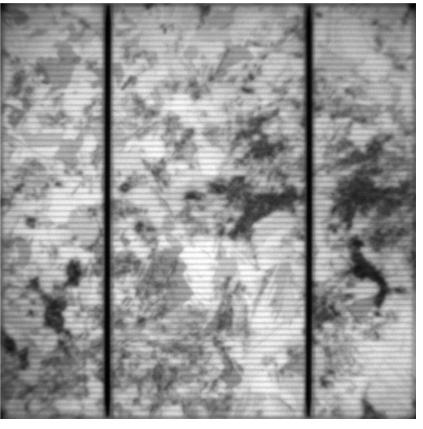


Correlation of Cell Efficiency with Photoluminescence Images

Bruce True Intevac Corp. Santa Clara, CA


- Photoluminescence
 - Illumination with a wavelength shorter than the bandgap stimulates emission at the bandgap
- Emission is related to minority carrier diffusion length
 - Brighter emission implies higher conversion efficiency
- Luminescence images show:
 - Material quality
 - Dopant uniformity
 - Cracks
 - Crystal Defects

N T E V A C ____


Photoluminescence Images

As-cut multi-crystalline wafer

Finished multi-crystalline cell

Think Lean. Create Value.

Jan 22nd, 2012, NCCAVS Symposium 3

Photoluminescence

INTEVAC

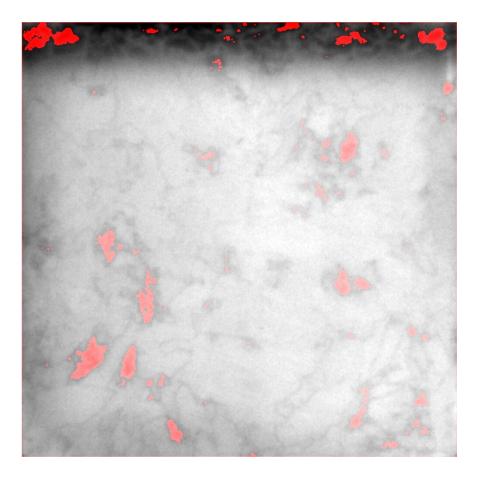
Advantages

- Applicable for in-process wafers or finished cells and assemblies
 - As-cut, textured, post-diffusion, post-ARC, metallized, finished cells
- No material contact required
 - No chance of breakage
 - Cell alignment not critical

Disadvantages

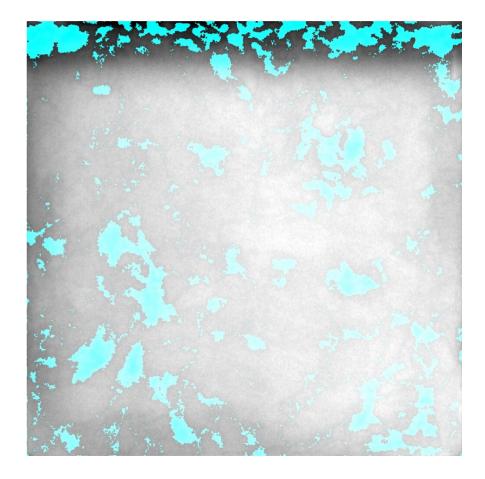
- Uniform illumination source required
- Trade-off between experiment time and image resolution
- Cell cooling for bright light sources required

 $\eta \propto V_{OC} J_{sc} FF$

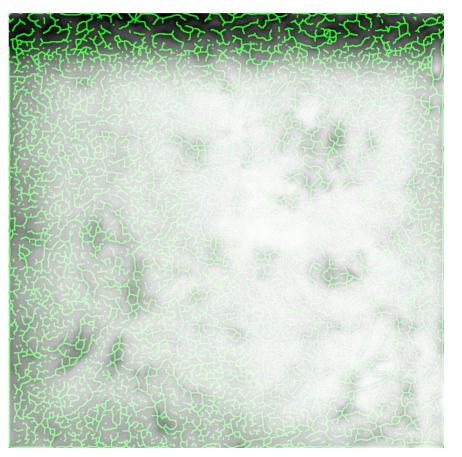

- Voc is the open circuit voltage of the cell
 - Depends largely on the quality of the silicon
- Jsc is the short circuit current density of the cell
 - Depends on the design and processing of the cell and the quality of the silicon
- FF is the fill factor of the cell
 - Depends largely on the electrical properties of the finished cell
- Photoluminescence correlates with Voc and Jsc, but not FF.
- The product of Voc and Jsc can be used as a measure of material quality.

- Dislocation Clusters
 - Area where many crystal defects have aggregated during casting
 - Increase recombination and impede carrier flow
- Edge Impurities
 - Foreign atoms diffuse in from the walls of the crucible
 - Impurities reduce the carrier lifetime
 - Some gettering of impurities is possible during processing
- Grain Boundaries
 - Location where crystals of differing orientations meet
 - Attracts impurities and impedes carrier flow

Dislocations


- Appear as very dark patches in the PL image
- Need to eliminate intensity variations due to impurities and doping nonuniformity
 - Low stop filter
- A simple intensity level threshold is able to identify the dark patches

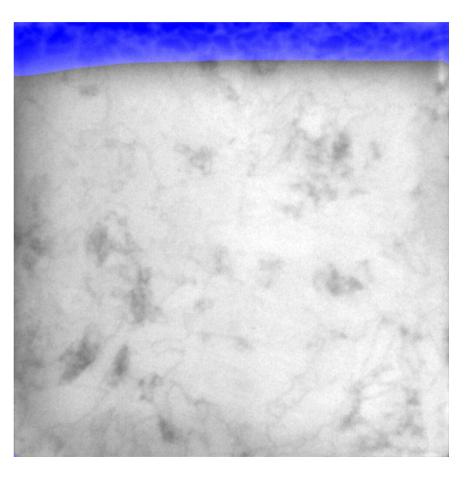
Other Defects



 Choosing a second threshold level highlights the areas with reduced lifetime

Grain Boundaries

- Appear as narrow dark lines in the PL image
 - narrow bright lines in the edge impurity regions
- Comprise the high frequency information of the PL image
- Can be extracted from using a bandpass filter



Jan 22nd, 2012, NCCAVS Symposium 10

Edge Impurities

- Two distinguishing characteristics in the PL image
 - Darker than rest of the wafer
 - Grain boundaries are brighter than the surrounding silicon
- Use a combination of intensity threshold and histogram pattern to identify impurity regions

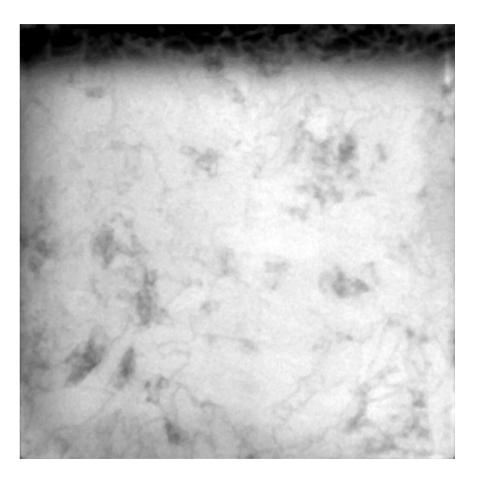
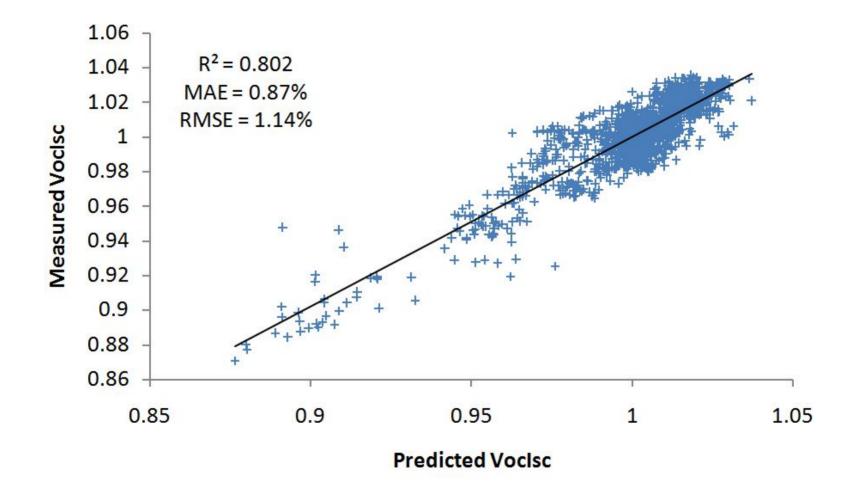


Image Statistics


- Basic image statistics reveal much of the wafer quality
 - Mean intensity
 - Intensity standard deviation
 - Image histogram
 - Map of the local standard deviation
- The same statistics can be recalculated after excluding the edge impurity region

- A large training set of wafers is collected.
 - Each wafer is imaged by photoluminescence.
 - The thickness and resistance of each wafer is measured.
 - The wafer are processed into finished cells and the electrical properties are measured.
- A second test set of wafer is also collected and processed in the same manner as the training set
 - Alternately, the test set can be divided into smaller groups and internally cross-validated.
- A machine learning algorithm builds a model of the finished cell electrical properties based on the wafer metrics
 - The model can be process agnostic for general material quality.
 - For the highest accuracy, the model must be process specific.

Fit of a Data Set of ~1500 wafers

Think Lean. Create Value.

INTEVAC

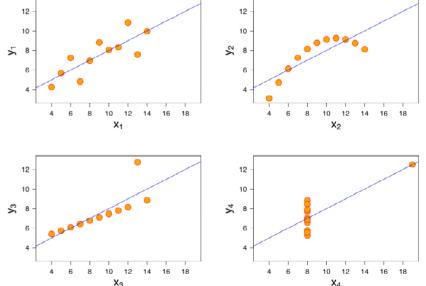
Coefficient of Determination R²

$$R^{2} \equiv 1 - \frac{\sum (y_{i} - f(x_{i}))^{2}}{\sum (y_{i} - \overline{y})^{2}}$$

A measure used in statistical model analysis to assess how well a model explains and predicts future outcomes. It is indicative of the level of explained variability in the model. The coefficient, also commonly known as R-square, is used as a guideline to measure the accuracy of the model.

In general, the higher the R² the better the predictability of the model.

However...


Think Lean. Create Value.

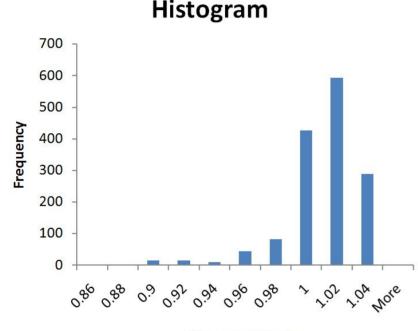
| N T E V A C 🗕

Jan 22nd, 2012, NCCAVS Symposium 15

Problems with R-square

- These four charts have the same R² value (0.66)
- Long tails have a large impact on R² value.
- Outliers can have a disproportionate effect on R².

http://en.wikipedia.org/w/index.php?title=Anscombe%27s guartet&oldid=465616431



$$MAE = \frac{1}{n} \sum |f(x_i) - y_i|$$
$$RMSE = \sqrt{\frac{1}{n} \sum (f(x_i) - y_i)^2}$$

- The mean absolute error (MAE) is a quantity used to measure how close forecasts or predictions are to the eventual outcomes.
- The root mean square error (RMSE) is a similar measure of the differences between the predicted and measured values.
- They are unaffected by data with a long tail.

Distribution of Wafer Quality

Measured Voclsc

- Typical multi-crystalline silicon production yields a skewed distribution with long tail of lower quality material.
- Removing low quality material before processing will shift the average efficiency higher and improve the line yield.

Think Lean. Create Value.

F

- INTEVAC_
- Photoluminescence images can be used as a predictor of wafer quality.
- Low quality wafers can be rejected at the as-cut stage, before being processed into cells.
 - Saves processing costs
 - Material at the as-cut stage can be recycled.
- Good quality wafers can be segregated into quality or other bins
 - Leads to better factory output prediction
 - Different bins can be processed through different lines for higher efficiency

Thank you for your time.

Bruce True Intevac Corp. <u>btrue@intevac.com</u>