

The Flip Side of Technology:
how plasma systems must evolve
for solar PV applications

NCCAVS Joint User Group Meeting
February 23^d 2011
E. Ryabova, A. Skumanich
SolarVision Consulting

Solar Vision Consulting

- Founded 2007
- Team of technologists and market research and analysis specialists
 - > <u>Technical team:</u> > 60 years collective industry experience
 - > <u>Flexibility</u>: Primary market research, technology development
 - > International scope: Global projects including India, China & Russia
- Manufacturing and micro-grid development guidance
- Innovative technology introduction and collaboration
- Reports:
 - PV, CPV, CSP Market and Technology Roadmaps
 - Rural Micro-grid Electrification for Developing Countries
 - Custom Reports
 - Due Diligence

Current PV-Industry Status

The cost of manufacturing is the flip side of technology development in PV and both sides of the coins must be considered for any technical innovation

Comparisons

- Semiconductor manufacturing is about Moore's Law: more transistors per unit area
 - Increase Density of Transistors per unit area
 - Metric is \$/transistor = (\$/cm2) / (transistors/cm2)
 - ITRS road map: decrease dimensions to achieve improved number of transistors per unit area
 - #/cm2 goes up faster than the cost/cm2
 - So Cost/transistor drops processing speed is important but not critical
- Solar manufacturing is about More area per hour
 - Cost reductions come from volume manufacturing increases
 - Metric: \$/W which translates to \$ per meter2 and to m2 per hour
 - Roadmap is about \$/W = (\$/meter2) / (Wt/meter2)
 - The cost/area is improved → faster processing gives Increased m2 per hour = lower cost per area
 - \$/m2 must drop faster because Wt/m2 is harder to move!
 - Processing speed is critical

PV-device vs. VLSI-device

Similarities

- Employ semiconductors
- Require p-n junction
- Operate as Thin Film Stack
- Utilize vacuum methods

Distinctions

- Lateral integration density
- Material diversity
- Number of layers
- Lifetime expectancy

Currently Used Vacuum Methods

- PVD
 - Diffusion Barriers
 - Moisture Barriers
 - Mo and absorbers for CIGS
 - Transparent Conductive Oxide Electrodes
- PECVD
 - Surface Passivation/Antireflection layers
 - > Selective Emitter Formation Masks
- MOCVD
 - > Single/multijunction absorbers
- LPCVD
 - Transparent Conductive Oxide Electrodes
- ALD
 - Back Surface Passivation
 - Cd-free Buffer layer

Advantages

- **✓ High Throughput**
- Plurality of compounds
- Conveyer operation

Course of Evolution

- CapEx Optimization
- Energy Budget
- Footprint
- Targets:
 - · Purity & Stoichiometry
 - Material Utilization Rate

Anwell

Course of Evolution

- **CapEx Optimization**
- **□ Energy Budget**
- **Throughput**
- Footprint

MOCVD^{PV}

Advantages

- Flexible processing
- Exotic compounds
- Doping control

Course of Evolution

- □ In-line operation
- Hazardous waste
- Thermal stress

Course of Evolution

- **Throughput**
- Precursor Cost
- **Abatement**

Vacuum Methods in Demand

- Plasma Etch
 - > <u>Texturing</u>
 - PSG (BSG)Removal
 - Selective Emitter Formation
 - > Interdigitated Backside Contacts

Considerations for new improvements

- The technology roadmap is "learning" based
- Cost reductions come from volume manufacturing
- Reduction in thickness entails multiple process innovations

Solar Vision Co.

Technology Roadmap of PV industry can be depicted as a product of comprehensive considerations where the process equipment evolution plays a key role in addressing the specific requirements of PV industry

SolarVisionCo team is actively involved in PV-device cost/performance matrix optimization with the combine technology and market expertise.

